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Quantum independent-set problem and non-Abelian adiabatic mixing
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We present an efficient quantum algorithm for independent-set problems in graph theory, based on non-
Abelian adiabatic mixing. We illustrate the performance of our algorithm with analysis and numerical calcu-
lations for two different types of graphs, with the number of edges proportional to the number of vertices or
its square. Our quantum algorithm is compared to the corresponding quantum circuit algorithms and classical
algorithms. Non-Abelian adiabatic mixing can be a general technique to aid exploration in a landscape of
near-degenerate ground states.
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I. INTRODUCTION

The supremacy of quantum computers over classical com-
puters is illustrated by many significant algorithms, in partic-
ular the Shor algorithm [1] for factorization and the Grover al-
gorithm [2] for search. These algorithms are based on discrete
operations orchestrating simple quantum gates. Algorithms of
this kind are called quantum circuit algorithms [3].

In another paradigm of quantum computing, algorithms
are implemented through the design of Hamiltonians. Here
one starts with an easy-to-prepare initial state, allows it evolve
dynamically, and at some point makes appropriate measure-
ments. (Of course, the Hamiltonians should correspond to
potentially realizable circuits.) Hamiltonian-based quantum
algorithms translate programming problems into physical
problems, which allow one to exploit familiar physical pro-
cesses to optimize algorithms. A Hamiltonian approach to
quantum search was proposed in 1998 [4] and soon extended
to more general “adiabatic” algorithms [5].

It has been shown that every quantum circuit algorithm can
be converted into a quantum adiabatic algorithm, whose time
complexity is polynomially equivalent (and vice versa) [6,7].
But the continuum approach can suggest different methods,
such as the non-Abelian mixing discussed here, or resonance,
as we will describe elsewhere [8].

Here we present an efficient quantum Hamiltonian algo-
rithm for the independent-set problem (see Fig. 1). Any graph
has trivial independent sets: the empty set and sets with
just one vertex. Our aim is to find non-trivial independent
sets, with two or, ideally, many more vertices. Independent-
set problems can be rephrased in terms of all-negated 2-
satisfiability (2-SAT) problems, and vice versa. Based on this
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observation, we are able to construct a Hamiltonian such that
its ground states are all independent sets of a given graph.
We then prepare the Hamiltonian system in one of its trivial
ground states and evolve it adiabatically along a closed path.
This leads to non-Abelian adiabatic mixing in the sub-Hilbert
space of degenerate ground states [9] and generates a quantum
state that is roughly an equal-probability superposition of all
ground states. As the number of non-trivial solutions is much
bigger (see Figs. 3 and 5), when we make a measurement in
the end, we will likely find a nontrivial solution. Numerical
results indicate that we are almost certain to find a nontrivial
independent set. We analyze the performance of our algorithm
for two different types of graphs: those with the number of
edges proportional to the number of vertices or to its square.
While finding solutions to this particular problem is not a
pressing issue, our technique brings in some physics which
is interesting in itself, and which might find more general
applications.

II. EQUIVALENCE TO 2-SAT

For a given graph, we can assign a Boolean variable to
each of its vertices (see Fig. 1): x j = 1 when the jth vertex
is chosen for an independent set and x j = 0 when it is not.
When two vertices xi and x j are connected by an edge, it
means that xi and x j cannot be simultaneously chosen for one
independent set. This is equivalent to imposing the following
two-variable clause

(¬xi ∨ ¬x j ) (i �= j). (1)

Therefore, finding an independent set of a graph n vertices
with m edges is equivalent to finding a solution to a 2-SAT
problem which has n variables and whose m clauses are of the
above form. Since the clauses involve only negated variables,
we call it an all-negated 2-SAT problem. An all-negated
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FIG. 1. An independent set of a graph is a set of vertices, no two
of which are connected by an edge. Each vertex is assigned a Boolean
variable: x j = 1 if the jth vertex is included in an independent
set and x j = 0 if not. For example, the empty circles here form
an independent set that is described by a set of Boolean numbers
(1,0,1,0,0,1,0,0).

2-SAT problem manifestly has at least n + 1 solutions,
namely (0, 0, 0, . . . , 0) and n assignments that have ex-
actly one variable being 1, such as (1, 0, 0, . . . , 0) and
(0, 1, 0, . . . , 0). They correspond to the trivial independent
sets: the empty set and sets with only one vertex. We are
interested in finding nontrivial solutions, that is, the solutions
with at least two 1’s. There are generic algorithms of time
complexity O(m + n) to find solutions for 2-SAT problems
[10,11]. However, these algorithms may well find the trivial
solutions. We need different algorithms to find nontrivial
solutions.

III. QUANTUM ALGORITHM

For a clause in Eq. (1), the function f (xi, x j ) = xix j is
minimized when the clause is satisfied. Notice that x j = (σ̂ z

j +
1)/2, where the third Pauli matrix σ z

j ∈ {1,−1} in the natural
basis. With these two observations, for a given graph (or a 2-
SAT problem), we construct the following Hamiltonian [12]:

H0 = �
∑
〈i j〉

(
σ̂ z

i + σ̂ z
j + σ̂ z

i σ̂ z
j

)
, (2)

where the summation 〈i j〉 is over all edges (or clauses). All
the independent sets are the ground states of H0 and vice
versa. The energy gap between the ground states and the first
excited states is 4�.

We rotate spin σ̂ z
j to an arbitrary direction �r =

{sin θ̄ cos ϕ̄, sin θ̄ sin ϕ̄, cos θ̄}, and obtain new spin operator
τ̂ j = Vj σ̂

z
j V

−1
j with

Vj =
(

cos θ̄
2 e−iϕ̄ sin θ̄

2

eiϕ̄ sin θ̄
2 − cos θ̄

2

)
= V −1

j . (3)

If |u〉 j and |d〉 j are eigenstates of σ̂ z
j , that is, σ̂ z

j |u〉 j = |u〉 j
and σ̂ z

j |d〉 j = − |d〉 j , the eigenstates of τ̂ j are

|u�r〉 j = cos
θ̄

2
|u〉 j + sin

θ̄

2
eiϕ̄ |d〉 j , (4)

|d�r〉 j = sin
θ̄

2
|u〉 j − cos

θ̄

2
eiϕ̄ |d〉 j . (5)

FIG. 2. Adiabatic path in the algorithm. θ is the angle between
the rotating axis and the z axis and ϕ is the angle rotated from the
initial direction. Note that θ and ϕ here are related to but different
from θ̄ and ϕ̄ in Eq. (3).

With U = V1 ⊗ V2 ⊗ · · · ⊗ Vn, we can rotate all the spins to
the same direction and construct a new Hamiltonian,

Hτ = UH0U
−1 = �

∑
〈i j〉

(τ̂i + τ̂ j + τ̂iτ̂ j ). (6)

It is clear that Hτ has the same set of eigenvalues as H0. The
eigenstates of Hτ can be obtained by rotating the ones of H0,
and have the following form:

|Eα〉 = |u�r〉1 ⊗ |d�r〉2 ⊗ · · · ⊗ |u�r〉 j ⊗ · · · ⊗ |u�r〉n

= |u�r, d�r, . . . , u�r, . . . , u�r〉 . (7)

The Hamiltonian Hτ is parametrized by the direction �r.
With this in mind we propose the following quantum algo-
rithm for the independent-set problem:

(1) prepare the system at state {−1,−1, . . . ,−1}, which
corresponds to the empty set (0, 0, . . . , 0);

(2) set �r initially along the z axis and slowly change Hτ by
changing �r along a closed path shown in Fig. 2;

(3) make a measurement after �r returns to the z direction.
Note that the energy gap 4� of Hτ does not change with

�r and is independent of the system size n. Therefore, the
evolution in the above algorithm can be made adiabatic by
changing �r at a slow but constant rate. As {−1,−1, . . . ,−1}
is a ground state of H0, when �r changes slowly, the system will
stay in the sub-Hilbert space spanned by the ground states of
Hτ . This kind of adiabatic evolution in a sub-Hilbert space
of degenerate eigenstates was studied in Ref. [9], where it is
found that an adiabatic evolution along a closed path is given
by

W = P exp i
∮

A(t )dt, (8)

where A is the gauge matrix given by Aα,β = i 〈Eα| ∂t |Eβ〉
(∂t ≡ ∂/∂t) and P is a symbol reminding us that A(t ) at
different times is to be applied in time order. Note that such
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FIG. 3. (a) The number of independent sets of a graph as a
function of the number of vertices n for the case m = n. The fitting
line is given by log2 Ns = 0.029 + 0.748n. The result is averaged
over 1000 instances randomly sampled out of all possible config-
urations of edges; the standard error of every data point is around
10−3. (b) The averaged probability cn of the n + 1 trivial solutions
in the final state as a function of n. The fitting line is given by
log2 cn = −0.444 − 0.654n.

an adiabatic evolution of degenerate eigenstates was proposed
to construct quantum gates [13].

We find that 〈Eα| ∂t |Eβ〉 is not zero only when |Eα〉 and
|Eβ〉 differ by at most one qubit state. When α �= β, we have

Aα,β = i 〈Eα| ∂t |Eβ〉 = i 〈u�r | ∂t |d�r〉 = sin θ

2

dϕ

dt
, (9)

where θ is the angle between the rotating axis and the z axis
and ϕ is the rotating angle (see Fig. 2). When α = β and |Eα〉
has k qubits in state |u�r〉 and n − k qubits in state |d�r〉, we have

Aα,α = i 〈Eα| ∂t |Eα〉

= −
{

k sin2 θ

2
+ (n − k) cos2 θ

2

}
dϕ

dt
. (10)

Letting A = Ã dϕ

dt , we have

W = P exp
∮

iÃ(θ )dϕ = exp[2π iÃ(θ )], (11)

where the gauge matrix Ã is real and independent of time.
As the gauge matrix Ã has many off-diagonal terms, it

generates a mixing in the sub-Hilbert space of the ground
states, producing a quantum state that is roughly an equal-
probability superposition of all the ground states. When a
measurement is made at the end of the algorithm, we will
likely find a nontrivial ground state since the number of non-
trivial solutions is much bigger than that of trivial solutions.
To illustrate the efficiency of our algorithm, we consider two
typical cases: the number of edges is proportional to (I) the
number of vertices or to (II) the square of the number of
vertices.

Case I. To be specific, we choose m = n. Let Ns(n) be
the number of all the independent sets of a given graph. Our
numerical results in Fig. 3(a) show that Ns grows exponen-
tially with n. The fitting gives us Ns(n) ≈ 1.02 × 20.748n. This
means that the n + 1 trivial sets are only a tiny part of all the
independent sets when n is large.

For our quantum algorithm, for simplicity we choose θ =
π/2, where the gauge matrix Ã has the simplest form. We

FIG. 4. (a) The averaged number of vertices NMIS of maximum
independent sets (MISs) of a graph as a function of the number
of vertices n for the case m = n. The fitting line is given by
NMIS = −0.344 + 0.608n. The result is averaged over 1600 instances
randomly sampled out of all possible configurations of edges; the
standard error of every data point is around 10−3. (b) The averaged
number N̄ of vertices for all the solutions in the final state as a
function of n. The fitting line is given by N̄ = 0.08 + 0.286n.

numerically compute

|ψ1〉 = W |ψ0〉 , (12)

where |ψ0〉 = {−1,−1, . . . ,−1} is the initial state. Let dn

be the probability of the n + 1 trivial solutions in the final
state |ψ1〉 and cn = dn/(n + 1) be the averaged probability.
Our numerical results are plotted in Fig. 3, where we see cn

decreases exponentially with n. Numerical fitting indicates
cn ≈ 0.735 × 2−0.654n. Therefore, we are almost certain to
find a nontrivial solution at the end of the algorithm. As the
gap 4� is independent of the problem size n, the time that
our adiabatic evolution takes to traverse one loop in Fig. 2 is
independent of n. Thus the time complexity of our quantum
algorithm is O(1), and for large n it produces a nontrivial
solution with near certainty.

It is interesting to gauge the potential of our algorithm
in finding the maximum independent sets (MISs). For this
purpose, we define the averaged number of vertices in inde-
pendent sets in the final quantum state |ψ1〉 = ∑

j a j |s j〉:

N̄ =
∑

j

|a j |2Nj, (13)

where Nj is the number of 1’s in the jth solution |s j〉.
According to our numerical results, in the case of m = n, the
average size of maximum independent set NMIS grows almost
linearly with n [Fig. 4(a)]. The averaged vertex number N̄ also
grows linearly with n but with smaller coefficient. While the
maximum independent set is hard to approximate [14], for
sparse graphs with average degree d = 2m/n, the results in
Ref. [15] show that NMIS ≈ (2 − εd ) n ln d

d , and the classical
greedy algorithm can find independent sets of nearly half
size (1 + ε′

d ) n ln d
d with high probability, where εd , ε

′
d → 0.

However, no efficient algorithm is known to find independent
sets of size (1 + ε′′) n ln d

d for any fixed ε′′ > 0. Our quantum
algorithm can on average find an independent set of size N̄ ≈
0.47NMIS; the ratio is slightly less than the greedy algorithm.

Case II. We choose specifically m = 
n2/4�. According to
Ref. [16], for such a graph there exists with almost certainty a
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FIG. 5. (a) Number of independent sets for graph m = 
n2/4�
as a function of n. The fitting line is given by ln Ns = −6.61 +
5.68 ln n

ln(n/2) . The result is averaged over 1000 instances randomly
sampled out of all possible configurations of edges; the standard error
of every data point is around 10−2. (b) The averaged probability cn

of the n + 1 trivial solutions in the final state |ψ1〉 as a function of n.
The fitting line is ln cn = −0.03 − 1.37 ln n.

maximum independent set of the following size:

k = 4

(
ln

n

4 ln(n/2)
+ 1

)
. (14)

Since all its subsets are also independent sets, the number
of independent sets Ns is at least Ns � O((n/ ln n)4 ln 2). The
numerical results in Fig. 5(a) show that

Ns ∝ O((n/ ln n)5.7). (15)

For this case, we evolve the system along the loop in Fig. 2
with θ = 1.2 to make all possible ground states more evenly
distributed in the final quantum state (see later discussion
with Fig. 8). Our numerical results in Fig. 3(b) show that the
averaged probability of finding trivial solutions cn ∝ 1/n1.37.

In this case, we find numerically that the number NMIS is
proportional to ln n

ln(n/2) while N̄ grows linearly with ln n (see
Fig. 6). In the classical algorithm, Erdós-Rényi random graphs

FIG. 6. (a) The averaged number of vertices NMIS in the maxi-
mum independent sets (MISs) of a graph as a function of the number
of vertices n for the case m = 
n2/4�. The fitting line is given by
ln NMIS = −3.36 + 3.91 ln n

ln(n/2) . The result is averaged over 1600
instances randomly sampled out of all possible configurations of
edges; the standard error of every data point is around 10−2. (b) The
averaged number N̄ of vertices for all the solutions in the final state as
a function of n. The fitting line is given by N̄ = 0.035 + 0.783 ln n.

FIG. 7. A median graph embedded in a cube for a graph that has
three vertices x1, x2, x3 and one edge connecting x1 and x3. Each point
represents an independent set and the solid line connects a pair of
independent sets that differ by only one element.

G(n, 1/2), which behave similarly to our model when n is
large, almost have a MIS of size 2 log2 n(1 + o(1)), but it is
still an open problem to find in polynomial time an indepen-
dent set of size (1 + ε) log2 n while a greedy algorithm can
reach log2 n [17,18]. Our results are worse than that, but can
still on average find an O(log n) size independent set in O(1)
time.

IV. QUANTUM DIFFUSION IN MEDIAN GRAPH

Our algorithm centers on the quantum non-Abelian adi-
abatic mixing in a sub-Hilbert space of degenerate ground
states. We find that such a dynamics process can also be
viewed as a quantum diffusion in a median graph which can
be embedded in an n-dimensional cube (see Fig. 7).

As the solutions of an all-negated 2-SAT problem form
a median graph [19–21], all the independent sets of a graph
form a median graph: each independent set is represented by
a point, and a pair of points are connected by a line when the
two independent sets differ by only one vertex. This median
graph can be embedded in an n-dimensional cube, as shown
in Fig. 7 for n = 3. Our Hermitian gauge matrix Ã(θ ) can be
regarded as a Hamiltonian defined on this median graph: the
on-site energy is Ãα,α while off-diagonal element Ãα,β gives
the hopping amplitude between two points α and β. If we
start with an initial wave function localized at (0, 0, . . . , 0),
this wave function will spread in the graph and the diffusion
process is given by

|ψ (t )〉 = exp[it Ã(θ )] |ψ0〉 . (16)

When t = 2π , we recover the adiabatic mixing in Eq. (12).
So, the adiabatic evolution in Fig. 2 is just a special case of
quantum diffusion in a median graph for t = 2nlπ (nl is a
positive integer).

Let us expand |ψ (t )〉 in terms of all the solutions

|ψ (t )〉 =
∑

j

a j (t ) |s j〉 , (17)

where |s j〉 is the jth solution. To characterize how widely the
wave function is diffused over the median graph, we define a
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FIG. 8. The time evolution of entropy S for the quantum diffu-
sion in the median graph. The dashed line is for a typical independent
set with θ = π/2; the solid line is for a different typical independent
set with θ = 1.2. The averaged or equilibrium value of the entropy is
S ≈ 0.77 for θ = π/2 and S ≈ 0.88 for θ = 1.2. n = m = 12.

quantum entropy

S(t ) = −
∑

j

|a j (t )|2 ln |a j (t )|2. (18)

It is called generalized Wigner–von Neumann entropy in
Ref. [22]. It is clear that the maximum of S(t ) is ln Ns. We
define S = S/(ln Ns) and plot S as a function of t in Fig. 8.
We again consider first the special case θ = π/2 (dashed
line in Fig. 8). We observe an interesting behavior of S: it
starts at zero, quickly rises up to a value very close to 1,
and eventually oscillates around an equilibrium value. At t =
2π, 4π, 6π, . . . , which correspond to adiabatically evolving
along the loop in Fig. 2 over one, two, three, . . . rounds,
we have S ≈ 0.75. This means that the probability is roughly
evenly distributed among all possible solutions. We checked
numerically how probability is distributed among different
sets of the solutions. For example, if the number of solutions
with three 1’s is N3, then the probability of |ψ1〉 in these
solutions is approximately N3/Ns.

We can reduce the fluctuations of S and raise its equilib-
rium value by choosing a different θ . In Fig. 8, we have plotted
S for θ = 1.2 (solid line). We see much smaller oscillations
around a larger equilibrium value. At t = 2π, 4π, 6π, . . . , we
have S ∼ 0.85.

The behavior of S in Fig. 8 resembles how a similar quan-
tum entropy behaves in quantum chaotic systems [22–25]: it
rises up rapidly from a low initial value and quickly settles into
an equilibrium value. By comparing the two lines in Fig. 8 we
see that, when θ deviates from the special value π/2, Ã(θ )
tends to be more chaotic.

V. PERSPECTIVE AND APPLICATIONS

The conventional wisdom is that the time complexity for
quantum adiabatic algorithm is solely determined by the
energy gap [5]. So far, for most quantum adiabatic algorithms,
their energy gaps decrease exponentially with the system size
n [26]. In these cases, the polynomial time spent on preparing
the system and checking the final results can be comfortably
neglected in counting for time complexity. This appears no

longer to be the case for our quantum algorithm since the
running time of our algorithm, which is O(1) as indicated by
the constant energy gap, is much shorter than the preparation
time and checking time when n is large. As a result, one may
feel that it is necessary to include the preparation time and
checking time in time complexity. As there are m terms in
the Hamiltonian, the preparation should scale with m. The
checking time is clearly proportional to m. In this sense, our
algorithm is of time complexity O(m).

There is another way to assess the time complexity of
our algorithm: convert it to quantum circuits to see how the
number of quantum logic gates scales with n. The caveat is
that, although there is an optimal way to convert a quantum
circuit algorithm to a quantum adiabatic algorithm [7], there
is no optimal way to convert a quantum adiabatic algorithm
to a quantum circuit algorithm. If we adopt the scheme in
Ref. [26], the converted quantum circuit algorithm is of time
complexity at least O(n3). If the gauge matrix A is treated
as a sparse matrix, the converted quantum circuit algorithm
may be of time complexity O(n2) [27]. One would expect that
the optimally converted quantum circuit algorithm cannot be
better than O(n).

When the independent-set problem is regarded as a 2-SAT
problem, there exist both quantum and classical algorithms.
In Ref. [28], Farhi et al. proposed a quantum algorithm for a
class of restricted quantum 2-SAT problems. This algorithm is
applicable to our independent-set problem and the time com-
plexity is O(m4n2). This is slower than the generic classical
algorithm for 2-SAT problems, which is of time complexity
O(m + n).

There is another classical algorithm where one simply
picks up two variables and sets them to 1. For the graph
with m = n, the chance of this randomly picked solution
being wrong is proportional to 2m/n(n − 1) ∼ 1/n, which
decreases polynomially with the graph size n. In compari-
son, in our quantum algorithm, the chance of being wrong
is exponentially small. For the graph with m = 
n2/4�, the
chance of this randomly picked solution being wrong is about
n2/2n(n − 1) ∼ 1/2, which is independent of n. One may
improve this classical algorithm by running it in parallel.
For example, for the latter case, if one runs the algorithm
in parallel on k different computers, the chance of success
can increase substantially and becomes 1 − 1/2k . However, in
this algorithm, one has to take the checking time into account
for time complexity; otherwise, one would not know which
computer produces the correct answer. The time complexity,
as a result, is at least O(km).

The key of our algorithm, adiabatic non-Abelian mixing,
can be applied to other problems that have multiple solutions
with one or more solutions that are easy to find or already
found. For example, a class of quantum 2-SAT problems have
multiple solutions and one of their trivial solutions is precisely
|−1,−1,−1, . . . ,−1〉 [28–31].

The maximum independent-set problem for a graph is
an NP-hard problem. Our analysis above puts this problem
in a different perspective. The maximum independent set
corresponds to the point which is farthest from the original
point (0, 0, . . . , 0). In our algorithm, a quantum particle orig-
inally at (0, 0, . . . , 0) will indeed arrive at this farthest point
through quantum diffusion, but with very small probability.
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Our understanding of quantum diffusion may help us to find a
way to increase this probability significantly.

VI. CONCLUSION

In sum, we have presented an efficient quantum algorithm
for independent-set problems which exploits the non-Abelian
adiabatic mixing in a sub-Hilbert space of degenerate eigen-
states. We expect our algorithm will have potential applica-
tions in many other problems.
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