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We present a quantum algorithm for approximating maximum independent sets of a graph based on quantum
non-Abelian adiabatic mixing in the sub-Hilbert space of degenerate ground states, which generates quantum
annealing in a secondary Hamiltonian. For both sparse and dense random graphs 𝐺, numerical simulation
suggests that our algorithm on average finds an independent set of size close to the maximum size 𝛼(𝐺) in low
polynomial time. The best classical algorithms, by contrast, produce independent sets of size about half of 𝛼(𝐺)
in polynomial time.
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Finding a maximum independent set (MIS) of a
graph is an NP-hard problem that appears difficult to
solve even approximately. In spite of decades of re-
search, no known classical algorithm produces much
better results than the naive, greedy strategy.

For a graph 𝐺(𝑛,𝑚) that contains 𝑛 vertices and
𝑚 edges, it is known that unless P =NP no polyno-
mial algorithm can find an 𝑂(𝑛1−𝜖)-approximate so-
lution in the worst case,[1,2] where 𝜖 > 0 is an ar-
bitrary small positive number that is independent of
𝑛. We let 𝛼(𝐺) denote the largest size of indepen-
dent sets for a given graph 𝐺. The aforementioned
statement means that the size of the best approximate
MIS found by a polynomial algorithm is ∼𝛼(𝐺)/𝑛1−𝜖.
This is not an impressive result when you notice that
1 ≤ 𝛼(𝐺) ≤ 𝑛. Average case performance, for both
sparse and dense graphs, is not much better. Consider
for example the class of Erdös–Rényi random graphs,
denoted 𝐺(𝑛,𝒫), where 𝒫 is the probability to gen-
erate an edge between any pair of vertices. Erdös–
Rényi graphs 𝐺(𝑛,𝒫) are dense at 𝒫 = 1/2, as their
edge numbers are proportional to 𝑛2. For them, the
MIS size is typically 𝛼[𝐺(𝑛, 1/2)] ∼ 2 log2 𝑛.[3] How-
ever, no classical algorithm is known or suspected to
produce in polynomial time, with non-vanishing prob-
ability, an independent set of size (1+𝜖) log2 𝑛 for any
fixed 𝜖 > 0, neither analytically nor through numer-
ical evidence.[4] It is common to take 𝑑 = 2𝑚/𝑛 to
define sparse random graphs 𝐺(𝑛,𝑚) parametrically.

One finds that for sparse graphs with 𝑑≫ 1[5]

𝛼[𝐺(𝑛,𝑚)] ∼ 2𝑛
ln 𝑑

𝑑
. (1)

Here too, no classical algorithm is known or suspected
to perform well—specifically, to find an independent
set of size (1 + 𝜖)𝑛 ln 𝑑

𝑑 in polynomial time with non-
vanishing probability.

Here we introduce a quantum algorithm which ap-
pears, in extensive numerical evidence, to perform
much better. It builds on the quantum algorithm for
independent sets we proposed in Ref. [6], but adds a
major new ingredient. Numerical experiments indi-
cate that our quantum algorithm typically produces
an independent set of size almost 𝛼(𝐺) in low polyno-
mial time, for both sparse and dense random graphs in
the average-case scenario, where we average over both
the final quantum measurement and many randomly
generated graphs.

Quantum Adiabatic Evolution in the Solution-
Subspace. Our approach for approximating MIS builds
on a quantum algorithm for independent sets.[6,7] To
fix notation and to make this work self-contained, we
briefly recall the earlier algorithm here. For a given
non-empty graph 𝐺, we construct a corresponding
spin-system with the following Hamiltonian[6]

𝐻0 = 𝛥
∑︁

⟨𝑖𝑗⟩
(�̂�𝑧

𝑖 + �̂�𝑧
𝑗 + �̂�𝑧

𝑖 �̂�
𝑧
𝑗 ). (2)
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Here the summation ⟨𝑖𝑗⟩ is taken over all edges in the
graph. Spin 𝑗 being up should be interpreted as in-
clusion of site 𝑗 in the candidate set, and the terms
in the Hamiltonian as imposing a penalty for connec-
tion between included sites. Two key features of this
Hamiltonian are:

1. The independent sets of a graph 𝐺 are in one-
to-one correspondence with the ground states of
𝐻0.

2. There is an energy gap 4𝛥 between the ground
states and the first excited states, independent
of 𝑛 and 𝑚.

These features allow us to explore the space of inde-
pendent sets through non-abelian adiabatic evolution.

We consider acting uniformly upon all the spins
with the rotation matrix

𝑉𝑗 =

(︂
cos 𝜃

2 𝑒−𝑖𝜙 sin 𝜃
2

𝑒𝑖𝜙 sin 𝜃
2 − cos 𝜃

2

)︂
= 𝑉 −1

𝑗 . (3)

𝑉𝑗 represents rotation through 𝜋 around the axis
(sin 𝜃

2 cos𝜙, sin 𝜃
2 sin𝜙, cos 𝜃

2 ) and takes the unit vec-
tor (0, 0, 1) to 𝑟 ≡ (sin 𝜃 cos𝜙, sin 𝜃 sin𝜙, cos 𝜃). Note
that such mapping from the 𝑆𝑂(3) rotation to 𝑉𝑗 is
not unique and 𝑉𝑗 does not have unit determinant,
but it includes a convenient overall phase factor.

If |𝑢⟩𝑗 and |𝑑⟩𝑗 are eigenstates of �̂�𝑧
𝑗 , that is,

�̂�𝑧
𝑗 |𝑢⟩𝑗 = |𝑢⟩𝑗 and �̂�𝑧

𝑗 |𝑑⟩𝑗 = − |𝑑⟩𝑗 , then the eigen-
states of 𝜏𝑧𝑗 ≡ 𝑉𝑗 �̂�

𝑧
𝑗𝑉

−1
𝑗 are

|𝑢𝑟⟩𝑗 = cos
𝜃

2
|𝑢⟩𝑗 + sin

𝜃

2
𝑒𝑖𝜙 |𝑑⟩𝑗 , (4)

|𝑑𝑟⟩𝑗 = sin
𝜃

2
|𝑢⟩𝑗 − cos

𝜃

2
𝑒𝑖𝜙 |𝑑⟩𝑗 . (5)

Upon acting with 𝑈 = 𝑉1 ⊗ 𝑉2 ⊗ · · · ⊗ 𝑉𝑛, we rotate
all the spins and find a new Hamiltonian

𝐻𝜏 = 𝑈𝐻0𝑈
−1 = 𝛥

∑︁

⟨𝑖𝑗⟩
(𝜏𝑧𝑖 + 𝜏𝑧𝑗 + 𝜏𝑧𝑖 𝜏

𝑧
𝑗 ). (6)

Of course, 𝑈 need not be implemented through phys-
ical rotation of the computing apparatus; it can be
simulated using parallel operation of simple, one-bit
gates.

𝐻𝜏 has the same set of eigenvalues as𝐻0. Its eigen-
states of 𝐻𝜏 are obtained by rotating those of 𝐻0, in
the form

|𝐸𝜇(𝜃, 𝜙)⟩ = |𝑠1⟩ ⊗ |𝑠2⟩ ⊗ · · · ⊗ |𝑠𝑗⟩ ⊗ · · · ⊗ |𝑠𝑛⟩ , (7)

where 𝜇 is a string of {±1}𝑛, and |𝑠𝑗⟩ = |𝑢𝑟⟩ or |𝑑𝑟⟩
for 𝜇𝑗 = 1 or −1.

The quantum algorithm in Ref. [6] starts the spin
system in the state 𝐸𝜇 with 𝜇 = {−1,−1, . . . ,−1},
which is one of many ground states of 𝐻0. Then all
spins are rotated in the same way, by slowly chang-
ing 𝑟. The system evolves, to exponential accuracy in

the slowness parameter, within the sub-Hilbert space
spanned by the ground states of 𝐻𝜏 . However, the
evolution within that space is nontrivial due to the
non-Abelian geometric phase,[8] and when 𝑟 is rotated
back to the 𝑧-direction, upon measurement one ob-
tains with high probability a non-trivial independent
set.[6]

The evolution within the sub-Hilbert space of the
ground states is given by[8]

|𝜓(𝑡)⟩ = 𝑃 exp
(︁
𝑖

∫︁ 𝑡

0

𝐴(𝑡′)𝑑𝑡′
)︁
|𝜓(0)⟩ , (8)

where 𝑃 stands for time ordering and 𝐴 is the hermi-
tian nonabelian gauge matrix. The off-diagonal terms
of the gauge matrix 𝐴 are non-zero only when they
connect states labeled by strings 𝜇, 𝜈 separated by
Hamming distance |𝜇− 𝜈| = 1. In that case we have

𝐴𝜇,𝜈(𝜃) = 𝑖 ⟨𝐸𝜇 |𝜕𝑡|𝐸𝜈⟩ = 𝑖 ⟨𝑢𝑟 |𝜕𝑡| 𝑑𝑟⟩

=
sin 𝜃

2

𝑑𝜙

𝑑𝑡
+
𝑖

2
sgn(𝜇− 𝜈)

𝑑𝜃

𝑑𝑡
, (9)

where sgn(𝜇 − 𝜈) is a sign function, depending on
the sign of first non-zero element of 𝜇 − 𝜈; and
𝜇 − 𝜈 is defined as element-wise subtractions [e.g.,
sgn({1, 1,−1} − {−1, 1, 1}) = sgn({2, 0,−2}) = +1].
The diagonal terms of 𝐴 are

𝐴𝜇,𝜇(𝜃) = 𝑖 ⟨𝐸𝜇 |𝜕𝑡|𝐸𝜇⟩

= −
{︁
𝑛+ sin2 𝜃

2
+ (𝑛− 𝑛+) cos2

𝜃

2

}︁𝑑𝜙
𝑑𝑡
,
(10)

where 𝑛+ is the number of plus signs in 𝜇.
Equation (8) indicates that the gauge matrix 𝐴

can be regarded as an emergent Hamiltonian for the
spin system, generating unitary evolution within the
eigenspaces of the original Hamiltonians 𝐻0. We call
this the secondary Hamiltonian. In Ref. [6], we took
𝜃 to be fixed and let 𝜙 vary slowly. This gives rise
to a time-independent secondary Hamiltonian 𝐴(𝜃).
In this work we change both 𝜙 and 𝜃 slowly, under
the condition 𝑑𝜃/𝑑𝑡 ≪ 𝑑𝜙/𝑑𝑡. This generalization
brings in profoundly different dynamics. In this case,
𝐴(𝜃) becomes a time-dependent secondary Hamilto-
nian with the parameter 𝜃 changing slowly. Remark-
ably, the empty-set solution 𝜇 = {−1,−1, . . . ,−1} is
the ground state of 𝐴(0), but the maximum indepen-
dent set (MIS), which has largest number of vertices
𝑛+, is the ground state of 𝐴(𝜋).

According to the adiabatic theorem, sufficiently
slow evolution of the secondary Hamiltonian will keep
us within the ground state manifold. This means that
if we change 𝜃 slowly enough, and evolve from 𝜃 = 0
to 𝜃 = 𝜋, we will evolve to the state representing
the maximum independent set when 𝜃 = 𝜋 [note that
at the end we must reverse the spin directions, e.g.,
turning {−1,−1,+1} into {+1,+1,−1}, as the system
ends along the −𝑧 direction (𝜃 = 𝜋)]. This is a quan-
tum adiabatic algorithm for MIS. Its time complexity
is determined by the energy gap of 𝐴(𝜃).[9] In a worst
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case scenario the energy gap of 𝐴(𝜃) can be exponen-
tially small, as we will shortly exemplify. However,
our numerical results show that more typically, in in-
teresting cases we get independents set whose size is
very close to 𝛼(𝐺).

Two Special Graphs. To illustrate possible behav-
ior of the minimum energy gap of 𝐴(𝜃), let us consider
two special graphs. The first graph is the one that has
no edges. In this case, all combinations of vertices are
independent sets and the gauge matrix 𝐴(𝜃) acts on
the whole 2𝑛-dimension Hilbert space. Denote 𝐴(𝜃)
for no-edge graphs as 𝐴. It can be rewritten as

𝐴(𝜃) =
sin 𝜃

2

𝑑𝜙

𝑑𝑡

𝑛∑︁

𝑗=1

�̃�𝑥
𝑗 +

cos 𝜃

2

𝑑𝜙

𝑑𝑡

𝑛∑︁

𝑗=1

�̃�𝑧
𝑗

+
1

2

𝑑𝜃

𝑑𝑡

𝑛∑︁

𝑗=1

�̃�𝑦
𝑗 +

(︁
cos 𝜃 − 𝑛 cos2

𝜃

2

)︁
𝐼,

(11)

where 𝐼 is the 2𝑛×2𝑛 identity matrix and contributes
only a global phase factor during the evolution. Note
that these �̃�𝑥

𝑗 , �̃�
𝑦
𝑗 , �̃�

𝑧
𝑗 are not the spin operators 𝜎𝑧

𝑗 in
𝐻0, and they are used just to put 𝐴(𝜃) in a concise
form. If 𝑑𝜃/𝑑𝑡 is much smaller than 𝑑𝜙/𝑑𝑡, then we
can omit the third term of 𝐴 and have

𝐴(𝜃) ≈ sin 𝜃

2

𝑑𝜙

𝑑𝑡

∑︁

𝑗

�̃�𝑥
𝑗 +

cos 𝜃

2

𝑑𝜙

𝑑𝑡

∑︁

𝑗

�̃�𝑧
𝑗 . (12)

This is effectively a Hamiltonian for 𝑛 identical non-
interacting spins in the same magnetic field. Appar-
ently, 𝐴(𝜃) has a constant gap between the ground
state and the first excited state. When we let 𝜃 evolve
slowly from 0 to 𝜋 for a fixed period of time, the sys-
tem no matter how large will evolve from the initial
ground state at 𝜃 = 0 to the ground state at 𝜃 = 𝜋.
This is consistent with the original Hamiltonian in
Eq. (2). For the graph with no edges, the Hamilto-
nian 𝐻0 is zero. This means that there is no evolution;
the system stays in the state {−1,−1, . . . ,−1}. Upon
reversing the direction of the spins, we get the MIS
{1, 1, . . . , 1}.
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Fig. 1. (a) A special type of graphs that has 2𝑛 edges
and 2𝑛 + 1 vertices. Note that it has a unique maximum
independent set {𝑥0, 𝑥2, . . . , 𝑥2𝑛}. (b) The minimum en-
ergy gap of 𝐴 for these graphs as a function of 𝑛. The
fitting line is given by ln(gap)= 0.0286− 0.332𝑛.

The second special graph 𝑆𝑛 is shown in Fig. 1,
which has 2𝑛+1 vertices and 2𝑛 edges. The graph has
2𝑛 maximal independent sets, and only one of them

is the MIS. For each 𝑛, we compute numerically the
energy gaps of 𝐴(𝜃) for 0 ≤ 𝜃 ≤ 𝜋 and find the min-
imum. The results are plotted in Fig. 1, which shows
that the minimum energy gaps of𝐴(𝜃) for these graphs
decrease exponentially with 𝑛.

It is clear from these two special types of graphs
that there is no universal behavior for the minimum
energy gap of the gauge matrix 𝐴(𝜃).

Quantum Algorithm for Approximately Maximal
Independent Set. Our quantum algorithm for find-
ing an approximately maximal independent set runs
as follows:

1. Construct the Hamiltonian 𝐻0 according to a
given graph 𝐺 and prepare the system at the
state {−1,−1, . . . ,−1}.

2. Set 𝑟(𝜃, 𝜙) initially along the 𝑧 axis and slowly
change 𝐻𝜏 according to 𝜃 = 𝜔𝜃𝑡, 𝜙 = 𝜔𝜙𝑡
with 𝜔𝜙 being some constant and 𝜔𝜃 = 𝜋𝜔𝜙/𝑇 .
𝑇 = 𝑛𝛾 is the total run time.

3. Stop the system at 𝜃 = 𝜋 and make a measure-
ment along the 𝑧 axis.

4. Reverse the direction of the spins, e.g., changing
{−1,−1, . . . ,−1} into {1, 1, . . . , 1}, to achieve
the 𝜇 for the candidate answer.

Since the energy gap of the secondary Hamiltonian 𝐴
can be exponentially small, run times 𝑇 = 𝑛𝛾 which
scale polynomially do not guarantee that the system
will stay in the ground state of 𝐴. However, the sys-
tem will stay mostly within the manifold of states
whose energy is close to the ground state, i.e., ap-
proximately maximum states, if the evolution is slow
enough. As a result, at the end of computation, we
may expect to find a good approximately maximum
states. We have explored this hypothesis numerically,
with excellent results in generic cases, as we will now
discuss. As the adiabatic condition for 𝐻𝜏 can be sat-
isfied (see the Supplemental Material), our numerical
simulation is done with 𝐴 so that we can compute for
larger graphs.

If the final quantum state is |𝜓𝑓 ⟩ =
∑︀

ℓ 𝑎ℓ |𝐸ℓ⟩ (af-
ter the reverse of the spin direction), we define the
averaged size �̄� of the independent sets as

�̄� =
∑︁

ℓ

|𝑎ℓ|2𝑁ℓ. (13)

Here 𝑁ℓ is the size of the ℓth independent set |𝐸ℓ⟩.
In the quantum mechanical formalism, this represents
the average value of a single measurement. We are
interested in the ratio 𝜅 = �̄�/𝛼(𝐺). Our numerical
results, displayed in Fig. 2(a), show that for Erdös–
Rényi random graph 𝐺(𝑛, 1/2), if we set 𝑇 ∼ 𝑛2,
the average of 𝜅 will increase to almost 1 when 𝑛 in-
creases. This is compared to the results obtained us-
ing the classical greedy and Metropolis algorithms[10]
(see the Supplemental Material for details of the two
algorithms). We run the classical algorithms several
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times on each graph to get �̄� and ratio 𝜅 = �̄�/𝛼(𝐺),
then run the process over multiple random graphs to
find the double average �̄�. Our numerical results in
Fig. 2(b) show that even for small graphs, the ratio
�̄� in the two classical algorithms is not as close to 1
as the one with our quantum algorithm. More impor-
tantly, the classical ratio �̄� tends to decrease when 𝑛
gets larger. This is consistent with the well known re-
sult that the best classical polynomial algorithm face
grave difficulty in pushing the ratio larger than 1/2
when 𝑛 goes to infinity[4] (see below).

(a)

(b)
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0.990

0.995

1.000

5 10 15 20

0.85

0.90

0.95

1.00

n

k
k

 Quantum
 Greedy
 Metropolis

Fig. 2. The average 𝜅 (or �̄�) as a function of 𝑛 for
Erdös–Rényi random graphs 𝐺(𝑛, 1/2) with three differ-
ent algorithms. (a) The results of our quantum algorithm.
We set 𝑇 = 𝑛2, 𝜔𝜙 = 1, 𝜔𝜃 = 𝜋/𝑇 and run over 1000
Erdös–Rényi random graphs 𝐺(𝑛, 1/2). The variance of 𝜅
is around 10−6. The calculation is carried out with 𝐴. (b)
The results of the Greedy algorithm and the Metropolis al-
gorithm in comparison with our quantum results. For the
Greedy algorithm, the calculation runs 1000 times over one
graph to get �̄� , and then runs over 1000 random graphs
to get �̄�. The variance of �̄� is around 10−4. For the
Metropolis algorithm, we set the iteration time 𝑇 = 𝑛2.
The calculation runs 1000 times over one graph to get �̄� ,
and then runs over 1000 random graphs to get �̄�. The
variance of �̄� is around 10−4. The lines in the figure are
guide for the eyes.

For sparse graphs with edge number 𝑚 = ⌊𝑛 ln𝑛⌋
the results are similar, as shown in Fig. 3.

These numerical results indicate that our quan-
tum algorithm can find an independent set of size
(1 − 𝜖)𝛼(𝐺) in run times 𝑇 ∼ 𝑛2. We also tried
𝑇 ∼ 𝑛. In this case the average radio 𝜅 decreases
when 𝑛 increases. These numerical results suggest
that our quantum algorithm is of time complexity of
𝑂(𝑛2). Note that in Ref. [11], it was shown that the
run time required in a quantum adiabatic algorithm
can increase polynomially with the system size even
when the energy gap is constant. Our numerical re-
sults (see the Supplemental Material) show that the
adiabaticity for 𝐻𝜏 is ensured with 𝑇 ∼ 𝑛2.
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Fig. 3. The average 𝜅 (or �̄�) as a function of 𝑛 for ran-
dom graphs 𝐺(𝑛,𝑚) with 𝑚 = ⌊𝑛 ln𝑛⌋ via three different
methods. (a) The results of our quantum algorithm. We
set 𝑇 = 𝑛2, 𝜔𝜙 = 1, 𝜔𝜃 = 𝜋/𝑇 and run over 1000 random
graphs 𝐺(𝑛, ⌊𝑛 ln𝑛⌋). The variance of 𝜅 is around 10−5.
The calculation is carried out with 𝐴. (b) The results
of the Greedy algorithm and the Metropolis algorithm in
comparison with our quantum results. For the Greedy al-
gorithm, the calculation runs 1000 times over one graph
to get �̄� , and then runs over 1000 random graphs to get
�̄�. The variance of �̄� is around 10−4. For the Metropolis
algorithm, we set the iteration time 𝑇 = 𝑛2. The calcu-
lation runs 1000 times over one graph to get �̄� , and then
runs over 1000 random graphs to get �̄�. The variance of
�̄� is around 10−4. The lines in the figure are guide for the
eyes.

Diffusion and Annealing in Solution Trees. In this
section, we review a theoretical picture that clarifies
the challenge of finding approximate maximum inde-
pendent sets, and offer a heuristic explanation for the
enhanced performance of our quantum algorithm, rel-
ative to classical ones.

For sparse graphs 𝐺(𝑛,𝑚), Coja–Oghlan and
Efthymiou showed in Ref. [4] that the difficulty is re-
lated to the structure of the space of independent
sets, which shatters severely when their size 𝑘 is large
enough. Thus, the classical Metropolis process has
exponentially large mixing times. The graphs con-
sidered in Ref. [4] have 𝑑 = 2𝑚/𝑛 ≫ 1. For these
graphs, the size of the maximum independent set is
𝛼 ∼ (2 − 𝜖𝑑)𝑛 ln 𝑑

𝑑 with high probability. Let 𝑆𝑘(𝐺)
denote all the independent sets of size 𝑘. “𝑆𝑘(𝐺) shat-
ters severely” in the precise sense that 𝑆𝑘(𝐺) can be
divided into many groups such that the Hamming dis-
tance between each pair of groups is proportional to
𝑛, while the number of independent sets in each group
decreases exponentially with 𝑛[4] (see Fig. 4). It is
found that 𝑆𝑘(𝐺) shatters for (1 + 𝜖𝑑)𝑛 ln 𝑑

𝑑 < 𝑘 < 𝛼.
This means that searches for the maximum indepen-
dent set, based on building up through consideration
of changes in small numbers of entries will get stuck
at sizes around 𝑛 ln 𝑑

𝑑 . This is the essential reason why
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polynomial classical algorithms have difficulty finding
independent sets of size 𝑘 > (1 + 𝜖𝑑)𝑛 ln 𝑑

𝑑 .

k=0

k=1

k=2

k bkc

k > kc

Fig. 4. The tree of independent sets of a graph 𝐺. Each
point represents an independent set; the one at the top
represents the empty set. The tree is layered: the inde-
pendent sets 𝑆𝑘(𝐺) in each layer has the same size 𝑘. If
the Hamming distance between an independent set of size
𝑘 and an independent set of 𝑘 + 1 is one, they are con-
nected by a solid line. Each point in the layer of 𝑘 + 1
must be connected by a solid line with a point in the layer
of 𝑘. For clarity, we only draw the solid lines between
𝑘 = 0 and 𝑘 = 1 and between 𝑘 = 1 and 𝑘 = 2. For
independent sets of the same size, they are connected by
dashed lines if the Hamming distance between them does
not scale up with 𝑛. Before a critical size 𝑘c, the tree is
well connected by dashed lines in each layer. When the
size is over 𝑘c, the layers shatter with the independent sets
divided into small groups, between each pair of which the
Hamming distance is proportional to 𝑛. At the same time,
the group size decreases exponentially with 𝑛.

Quantum evolution, by allowing superpositions,
can enable more efficient exploration of a shattered
solution landscape. All the candidates appear as com-
ponents in the wave function. In our context, differ-
ent independent sets are assigned different energies
according to the secondary Hamiltonian. During slow
evolution, we can expect the system which starts cold,
and plausibly remains so, to approach a quasi-thermal
equilibrium state, favoring larger overlaps with lower
energy eigenstates. Since low energies correspond, at
the conclusion of the evolution, to approximate maxi-
mum independent sets, with high probability they will

appear as the result of the final measurement. This ar-
gument is far from rigorous, but it makes the striking
numerical results presented above appear less myste-
rious.

It has been rigorously established that quantum
diffusion can hold advantages over classical random
walk for a special types of decision trees.[12] In the fu-
ture, it will be important to investigate further why
and in what circumstances quantum diffusion is more
effective than its classical counterpart.

In summary, we have proposed a quantum algo-
rithm for approximating the maximum independent
set of a graph 𝐺(𝑛,𝑚) by exploiting non-Abelian adia-
batic mixing in the sub-Hilbert space of solutions and
adiabatic evolution in the secondary Hamiltonian it
generates. Our numerical experiments indicate that
for both sparse and dense graphs on average we ob-
tain an independent set of almost maximum size 𝛼(𝐺)
size in the evolution time 𝑇 ∼ 𝑛2 with a single mea-
surement.

While our numerical results are encouraging, they
are limited to relatively small systems. Due to the ex-
ponential complexity of simulating qubit systems clas-
sically, we only calculated systems containing up to 20
qubits. We made a heuristic argument that makes a
robust quantum advantage, extending to large 𝑛, seem
plausible, but this question deserves much further at-
tention.
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A graph of n vertices and m edges is denoted as G(n,m). An independent set of a graph is a subset of its vertices,
where no pairs of vertices are connected by edges. For the graph shown in Fig.S1, the subset {x3, x6} is one of its
independent sets. For a graph, there are many independent sets, among which the maximum independent set (MIS)
has the largest number of vertices. For the graph in Fig.S1, the MIS is {x1, x3, x4, x5, x7}. As finding the MIS is an
NP-hard problem, one often settles to find the best approximation of the MIS. The success of an algorithm for finding
an approximation to the MIS is measured by

κ = N/α(G) , (1)

where N is the size of the largest independent set found by the algorithm and α(G) is the size of the MIS. We first
present our quantum algorithm for approximating the MIS and its detailed numerical simulation and then compare
it to two classical algorithms, greedy algorithm and Metropolis algorithm.

FIG. S1: A graph with 7 vertices and 5 edges.

I. OUR QUANTUM ALGORITHM AND ITS NUMERICAL SIMULATION

A. Our quantum algorithm

For a given graph G(n,m), we construct a corresponding spin-system with the following Hamiltonian [1]

H0 = ∆
∑

〈ij〉
(σ̂zi + σ̂zj + σ̂zi σ̂

z
j ) , (2)

where the summation 〈ij〉 is over all edges in the graph. The independent sets of G(n,m) have a one-to-one corre-
spondence with the ground states of H0, which has a scale-independent energy gap 4∆ between the ground states
and the first excited states.

We rotate spin σ̂zj to an arbitrary direction ~r = {sin θ cosϕ, sin θ sinϕ, cos θ}, and obtain a new spin operator

τ̂j = Vj σ̂
z
jV
−1
j with

Vj =

(
cos θ2 e−iϕ sin θ

2

eiϕ sin θ
2 − cos θ2

)
= V −1

j . (3)

If |u〉j and |d〉j are eigenstates of σ̂zj , that is, σ̂zj |u〉j = |u〉j and σ̂zj |d〉j = − |d〉j , the eigenstates of τ̂j are

|u~r〉j = cos
θ

2
|u〉j + sin

θ

2
eiϕ |d〉j , (4)

|d~r〉j = sin
θ

2
|u〉j − cos

θ

2
eiϕ |d〉j . (5)
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With U = V1 ⊗ V2 ⊗ · · · ⊗ Vn, we rotate all the spins to ~r direction and get a new Hamiltonian

Hτ = UH0U
−1 = ∆

∑

〈ij〉
(τ̂i + τ̂j + τ̂iτ̂j) (6)

The adiabatic evolution in the sub-Hilbert space of the ground states can be described by [2]

|ψ(t)〉 = P exp

(
i

∫ t

0

A(t′)dt′
)
|ψ(0)〉 , (7)

where P is for time ordering and A the non-Abelian gauge matrix. The off-diagonal terms of the gauge matrix A are
given by

Aα,β(θ) = i 〈Eα |∂t|Eβ〉 = i 〈u~r |∂t| d~r〉 =
sin θ

2

dϕ

dt
+
i

2
sgn(α− β)

dθ

dt
, (8)

where sgn(x) is the sign function, depending on which of |Eα〉 and |Eβ〉 have more up-spins. Diagonal terms of A are

Aα,α(θ) = i 〈Eα |∂t|Eα〉 = −
{
n+ sin2 θ

2
+ (n− n+) cos2 θ

2

}
dϕ

dt
, (9)

where n+ is the number of spins in the up direction along ~r (or, the number of qubits in state |u~r〉).
Our quantum algorithm for finding the approximation of MIS consists of the following steps:

1. Construct the Hamiltonian H0 according to a given graph G(n,m) and prepare the system at the state
{−1,−1, · · · ,−1}.
2. Set ~r(θ, ϕ) initially along the z axis and slowly change Hτ according to θ = ωθt, ϕ = ωϕt with ωϕ being
some constant and ωθ = πωϕ/T . T = nγ is the total run time.
3. Stop the system at θ = π and make a measurement. Then reverse the direction of the spins, e.g.
changing {−1,−1, · · · ,−1} into {1, 1, · · · , 1}, as the system ends along the −z direction.

If the final quantum state is |ψf 〉 =
∑
j aj |Ej〉 (after the reverse of the spin direction), we define the averaged size

N̄ of the independent sets as

N̄ =
∑

j

|aj |2Nj (10)

where Nj is the size of the jth independent set |Ej〉. We are interested in the ratio κ = N̄/α(G).

B. Simulations in the full Hilbert pace

In the above quantum algorithm, we have assumed that a large enough energy gap ∆ can ensure the quantum
evolution stays in the subspace of the ground states. However, there is no theoretical consensus on the lower bounds
of the total adiabatic evolution time T to have negligible excitation [3–5]. We numerically investigate this issue. In
our simulation, we set ∆ = 1.

To simulate the above quantum algorithm in the whole Hilbert space, we discretize the time evolution into small
time steps ti = i

M T , that is,

|ψ(T )〉 ≈ eiH(tM )∆t...eiH(t2)∆teiH(t1)∆t |ψ(0)〉 , (11)

where ∆t = T/M . We repeat the calculation with increasing M until the results get converged. Due to the exponential
complexity of such simulations we only get results of up to 11 qubits. But the small-scale simulation still gives strong
evidences that our evolution time T is long enough to neglect the excitation.

As the energy gap 4∆ and the evolution time T , the final state ψ(T ) will contain some excited states. We are
interested in the portion of |ψ(T )〉 that belongs to the ground states after the evolution. For the final state |ψf 〉 =∑
j aj |Ej〉 (after the reverse of the spin direction), we define the amplitude of all ground states as

g =
∑

|Ej〉∈ground states

|aj |2 , (12)
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FIG. S2: The simulations for Erdős-Rényi random graphs G(n, 1/2) with T = n2, ωϕ = 1, ωθ = π/T . (a) The results of ground
state amplitude g for ∆ = 1 with n. The calculation runs over 1000 Erdős-Rényi random graphs G(n, 1/2). The variance of g
is around 10−5. (b) The average κ for the two situation ∆ = 1 and ∆ → ∞(simulation with the gauge matrix A(t) instead of
H(t)). The calculation runs 1000 times over random graphs to get κ̄. The variance of κ̄ for ∆ = 1 is around 10−5. We can see
the two curves tend to get closer when n gets larger. The dashed lines are guide for the eye.

which is also the probability that we get an correct independent set after measuring the final state |ψf 〉.
In Fig.S2(a) we show that with T = n2, the final state contains nearly no excited states. In fact, with the qubit

number n increasing, the ground state probability grows, which means the adiabatic condition is better satisfied with
larger n. This is reasonable as the energy gap 4∆ does not change with n. This decreasing influence of finite ∆ with n
can be demonstrated further. If the final quantum state is |ψf 〉 =

∑
j aj |Ej〉 (after the reverse of the spin direction),

we define the averaged size N̄ of the independent sets as

N̄ =
∑

|Ej〉∈ground states

|aj |2Nj (13)

where Nj is the size of the jth independent set |Ej〉. We are interested in the ratio κ = N̄/α(G). The results are
shown in Fig. S2(b) and compared to the ones with the ground-state space approximation. In the ground-state space
approximation, we assume that there is no excitation at all and the system stays completely in the sub-Hilbert space
of the ground states. This is equivalent to ∆ =∞. The details of the ground-state space approximation can be found
in the next subsection. These results in Fig. S2(b) indicate that the two results become closer when n increases.

C. Simulations in the ground-state space

The above numerical simulation within the full Hilbert space shows that we can safely carry out our numerical
simulation in the subspace of the ground states with Eq.(7), which we call it ground-state space approximation. This
makes it possible for larger-scale simulation, especially for dense graphs whose total number of independent sets are
small. For the simulations of the evolution (7), we similarly discretize the time T into small time steps ti = i

M T

|ψ(T )〉 ≈ eiA(tM )∆t...eiA(t2)∆teiA(t1)∆t |ψ(0)〉 , (14)

where ∆t = T/M . We repeat the calculation with increasing M until the results get converged.
Our numerical results in Fig.S3 show that for Erdős-Rényi random graph G(n, 1/2), if we set T ∼ n2, the average

of r will increase to almost 1 when n increases. In contrast, the best classical polynomial algorithm can hardly get
the ratio larger than 1/2 when n goes to infinity[6].

For sparse graphs with edge number m = bn lnnc(see Fig.S4), m = n(see Fig.S5), m = 2n (see Fig.S6), the results
are quite similar.

We also tried T ∼ n (see Fig. S7). In this case the average radio r̄ will decrease when n increases. These numerical
results indicate that our quantum algorithm can find an independent set of size (1− ε)α(G) in a runtime T ∼ n2.

These results are compared to two classical algorithms, greedy algorithm and Metropolis algorithm, which will be
described in detailed in the next section. It is clear that even for graphs with small sizes our quantum algorithm
can outperform the classical ones. In m = n case the classical greedy algorithm performs as well as our quantum
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algorithm. It is because when d = m/n is small, the graph is likely not connected, thus can be split into small
subgraphs, which greatly reduce the computational hardness for greedy algorithm.

FIG. S3: The average κ (or κ̄) as a function of n for Erdős-Rényi random graphs G(n, 1/2) with three different algorithms.
(a) The results of our quantum algorithm. We set T = n2, ωϕ = 1, ωθ = π/T and run over 1000 Erdős-Rényi random
graphs G(n, 1/2). The variance of κ is around 10−6. (b) The results of the Greedy algorithm and the Metropolis algorithm
in comparison with our quantum results. For the Greedy algorithm, the calculation runs 1000 times over one graph to get N̄ ,
and then runs over 1000 random graphs to get κ̄. The variance of κ̄ is around 10−4. For the Metropolis algorithm, we set the
iteration time T = n2 and λ = n. The calculation runs 1000 times over one graph to get N̄ , and then runs over 1000 random
graphs to get κ̄. The variance of κ̄ is around 10−4. The lines in the left figure are guide for the eye.

FIG. S4: The average κ (or κ̄) as a function of n for random graphs G(n,m) with m = bn lnnc via three different methods.
(a) The results of our quantum algorithm. We set T = n2, ωϕ = 1, ωθ = π/T and run over 1000 random graphs G(n, bn lnnc).
The variance of κ is around 10−5. (b) The results of the Greedy algorithm and the Metropolis algorithm in comparison with
our quantum results. For the Greedy algorithm, the calculation runs 1000 times over one graph to get N̄ , and then runs over
1000 random graphs to get κ̄. The variance of κ̄ is around 10−4. For the Metropolis algorithm, we set the iteration time T = n2

and λ = n. The calculation runs 1000 times over one graph to get N̄ , and then runs over 1000 random graphs to get κ̄. The
variance of κ̄ is around 10−4. The lines in the left figure are guide for the eye.

II. SIMULATIONS FOR CLASSICAL ALGORITHMS

In this section we describe the details of the two classical algorithms that we have used for comparison with our
quantum algorithm.

A. Greedy algorithm

The pseudocode of our greedy algorithm is as follows:
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FIG. S5: The average κ (or κ̄) as a function of n for random graphs G(n,m) with m = n via three different methods. (a) The
results of our quantum algorithm. We set T = n2, ωϕ = 1, ωθ = π/T and run over 1000 random graphs G(n, n). The variance
of κ is around 10−5. (b) The results of the Greedy algorithm and the Metropolis algorithm in comparison with our quantum
results. For the Greedy algorithm, the calculation runs 1000 times over one graph to get N̄ , and then runs over 1000 random
graphs to get κ̄. The variance of κ̄ is around 10−4. For the Metropolis algorithm, we set the iteration time T = n2 and λ = n.
The calculation runs 1000 times over one graph to get N̄ , and then runs over 1000 random graphs to get κ̄. The variance of κ̄
is around 10−4. The lines in the left figure are guide for the eye.

FIG. S6: The average κ (or κ̄) as a function of n for random graphs G(n,m) with m = 2n via three different methods. (a) The
results of our quantum algorithm. We set T = n2, ωϕ = 1, ωθ = π/T and run over 1000 random graphs G(n, 2n). The variance
of κ is around 10−5. (b) The results of the Greedy algorithm and the Metropolis algorithm in comparison with our quantum
results. For the Greedy algorithm, the calculation runs 1000 times over one graph to get N̄ , and then runs over 1000 random
graphs to get κ̄. The variance of κ̄ is around 10−4. For the Metropolis algorithm, we set the iteration time T = n2 and λ = n.
The calculation runs 1000 times over one graph to get N̄ , and then runs over 1000 random graphs to get κ̄. The variance of κ̄
is around 10−4. The lines in the left figure are guide for the eye.

Algorithm 1 Greedy algorithm for maximal independent set

input: a graph G
output: an independent set of G
begin
set K = ∅, I = V (G), where V (G) is the vertex set of G
while I is not empty do

randomly choose a vertex in I that has a minimum degree, say vi
K = K

⋃{vi}
I = I \ {vi} \ Vsi , delete vi and all vertices that are connected to vertices in K, say Vsi , in I

end while
return K
end

This type of greedy algorithm is sometimes called minimum-degree greedy algorithm[7]. The greedy algorithm
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FIG. S7: The average κ as a function of n for Erdős-Rényi random graphs G(n, 1/2) with our quantum algorithm. The
simulation parameters are the same as in Fig.S3 except that T = n. The dashed line is guide for the eye.

performs quite well for small graphs that we considered (see Fig.S3-S6). The ratio κ̄ is only slightly outperformed by
our quantum algorithm, but it shows a decreasing trend while our quantum algorithm does not. In fact, the study by
M. Halldórsson and J. Radhakrishnan [7] shows that for graphs whose degrees of vertices d ≤ D are bounded, such
minimum-degree greedy algorithm can typically find an independent set with approximating ratio κ = 3/(D + 2).

B. Metropolis algorithm

We use the Metropolis algorithm introduced by Jerrum[8] . The main idea of the algorithm is to assign each
independent set K a weight according to its size w(K) = λ|K| and construct a Metropolis process to realize such
assignments. The construction is shown as below:

Algorithm 2 Metropolis algorithm for maximal independent set

input: a graph G, max iteration number M , adjustable variable λ
output: an independent set of G
begin
set i = 0, Ki = ∅, S = {Ki}, and V (G) the vertex set of G
while algorithm is not converged and i < M do

uniformly choose a random vertex v in V (G)
if v ∈ Ki then

with probability 1/λ, Ki+1 = Ki \ {v}, otherwise Ki+1 = Ki

else
if v /∈ Ki and Ki

⋃{v} is an independent set then
Ki+1 = Ki

⋃{v}
else Ki+1 = Ki

end if
end if
S = S

⋃{Ki}, i = i+ 1
end while
return the largest independent set K? in S
end

Different choices of λ will influence the performance of the algorithm. On the one hand, larger λ will assign large
independent sets larger weights, thus we have a greater probability to get a large independent set. On the other
hand, large λ will make it difficult for the algorithm to converge to equilibrium. In our calculation, we set λ = n and
iteration number T = n2.
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