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After a brief historical review of ergodicity and mixing in dynamics, particularly in quantum dynamics, we
introduce definitions of quantum ergodicity and mixing using the structure of the system’s energy levels and
spacings. Our definitions are consistent with the usual understanding of ergodicity and mixing. Two parameters
concerning the degeneracy in energy levels and spacings are introduced. They are computed for right triangular
billiards and the results indicate a very close relation between quantum ergodicity (mixing) and quantum chaos.
At the end, we argue that, besides ergodicity and mixing, there may exist a third class of quantum dynamics
which is characterized by a maximized entropy.
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I. INTRODUCTION

Ergodicity and mixing are of fundamental importance
in statistical mechanics. Ergodicity justifies the use of a
microcanonical ensemble and mixing ensures that a system
approaches equilibrium dynamically [1]. However, it is diffi-
cult to prove with mathematical rigor that a classical dynamical
system is ergodic or mixing. As a result, the microcanonical
ensemble in textbooks is still established with postulates [2].
More importantly, the concept of ergodicity and mixing is now
obsolete in the following sense: they are defined for classical
dynamics, while the dynamics of microscopic particles are
fundamentally quantum. To establish statistical mechanics
with quantum dynamics, we need to define ergodicity and
mixing in quantum dynamics.

In this work we define quantum ergodicity and mixing
using the structure of the system’s energy levels and spac-
ings without any assumption. With the early results of von
Neumann [3,4] and Reimann [5], it can be shown that our
definitions, which appear very mathematical, do lead to the
usual understanding of ergodicity and mixing. We introduce
two parameters to characterize the degeneracy in energy levels
and spacings, respectively. They are computed numerically for
right triangular billiards, whose classical dynamical properties
have been studied in great detail [6,7]. The numerical results
indicate that there is a very close relation between quantum
chaos and quantum ergodic or mixing: most nonintegrable
finite quantum systems are both ergodic and mixing. It is clear
from this example that a system whose quantum dynamics
is ergodic may not be ergodic in the corresponding classical
dynamics.

We draw a parallel between our paper and Peres’s two
papers [8,9]. Peres introduced his definitions for quantum
ergodicity and mixing in the first paper [8], then, with his
coauthors, illustrated these two concepts with examples in the
second paper [9]. In our paper we do both: we first introduce
our definitions for quantum ergodicity and mixing and then
illustrate them with examples.

*wubiao@pku.edu.cn

II. QUANTUM ERGODICITY AND MIXING

A. History

Ergodicity was introduced by Boltzmann in 1871 as a hy-
pothesis to understand thermodynamics microscopically [1].
Mixing was first discussed by Gibbs [10] and its mathematical
definition was introduced by von Neumann in 1932 [11]. Both
concepts concern the long-time behavior of dynamical systems
and are of fundamental importance to statistical mechanics.
They are now the focus of a fully developed branch of
mathematics called ergodic theory [12,13]. However, ergod-
icity and mixing are becoming less interesting to physicists
for two reasons: (i) After decades of research with many
meaningful results [12,13], it is still not rigorously proved
that many of the physical systems existing in nature are either
ergodic or mixing. (ii) Both ergodicity and mixing are only
defined for classical systems, while microscopic particles are
fundamentally quantum. Therefore, it is imperative to define
both ergodicity and mixing in quantum systems.

The first physicist who discussed quantum ergodicity was
von Neumann. In 1929, von Neumann proved two inequalities,
which he named the quantum ergodic theorem and quantum
H theorem [4], respectively. His ergodic theorem ensures
that the long-time average of a macroscopic observable not
only equals its microcanonical ensemble average but also has
small fluctuations. In other words, the observable deviates
considerably from its averaged value only rarely. So, by
ergodicity, von Neumann actually meant both ergodicity and
mixing. Interestingly, mixing as defined for classical dynamics
was only introduced three years later, in 1932, by von
Neumann [11]. In addition, according to von Neumann’s H
theorem, once the quantum system dynamically relaxes to its
equilibrium state, where macroscopic observables have small
fluctuations, this state also has a maximized entropy.

von Neumann’s results have been criticized by many [8,14].
We share the view of Goldstein et al. [14] that the criticism
was mostly misguided; von Neumann had captured the essence
of quantum ergodicity and mixing and his results are inspira-
tional. Nevertheless, some issues with von Neumann’s results
do exist. Most of the variables involved in the two theorems
are not computable in principle [15]. The reason is as follows.
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To prove his theorems, von Neumann introduced a coarse-
graining, which groups the Planck cells in quantum phase
space into some big cells. All the microscopic states in one
group of Planck cells correspond to a single macroscopic state.
This kind of coarse-graining is certainly reasonable. However,
no one knows how to technically establish such a many-to-one
mapping between macroscopic state and microscopic state.
This makes many of von Neumann’s variables in Ref. [4]
uncomputable. Though there may have been some revisions to
the theorem [16], this difficulty has not been overcome.

More recent definitions of ergodicity and mixing in quan-
tum mechanics were given by Peres [8]. Peres recalled the be-
havior of dynamical variables in classical ergodic and mixing
systems and expected that there should be analogous behavior
in quantum ergodic and mixing systems. In accordance with
von Neumann’s results, Peres defined ergodicity as the time
average of any quantum operator equal to its microcanonical
ensemble average and mixing as any quantum operator having
small fluctuations. However, Peres’s definitions were based
on his own definition of quantum chaos [8], which is a
subject of debate itself. To define quantum chaos, Peres used
an ambiguous concept of pseudorandom matrix. These two
steps, which are not mathematically very rigorous, along with
other reasonable but ambiguous assumptions, render Peres’s
definitions not satisfactory.

In the literature quantum ergodicity has been studied from a
different perspective, where the concept “quantum ergodicity”
is regarded as a branch of quantum chaos [17– 26]. This group
of researchers mainly focused on how the eigenfunctions of
a Hamiltonian converge to equidistribution in classical phase
space in the semiclassical limit or high-energy limit, with little
discussion of the dynamical behavior of a quantum system.
Their definitions of quantum ergodicity and mixing rely on
the corresponding classical cases and thus are not genuinely
quantum mechanical. Srednicki’s work on eigenfunction ther-
malization follows along this line and has little discussion of
quantum dynamics [27].

In the following subsection we define quantum ergodicity
and mixing using the energy structure of the system, that is,
eigenenergies and their spacings. Our definitions are mathe-
matically precise and have no assumptions. Furthermore, by
following von Neumann [3] and Reimann [5], we can show
that our definitions lead to the usual physical understanding of
ergodicity and mixing. Our definitions are based on quantum
dynamics and expressed in the language of pure quantum
mechanics without referring to classical mechanics. Near the
end of this paper, based on a recent work [15], we argue that we
may be able to expand our definitions to include a third class
of quantum dynamics, which is characterized by a maximized
entropy.

B. Definitions

Consider a quantum system with discrete eigenenergies
{En} and corresponding energy eigenstates {|φn⟩}.

Ergodicity. A quantum system is ergodic if its eigenener-
gies satisfy

δEm,En
= δm,n. (1)

Mixing. A quantum system is mixing if its eigenenergies
satisfy both the above condition, Eq. (1), and the following
condition:

δEk−El,Em−En
= δk,mδl,n, for k ̸= l, m ̸= n . (2)

Condition (1) indicates that there is no degenerate eigen-
state. Condition (2) implies that there is no degeneracy in
energy gaps between any pair of eigenenergies. It is clear that
a quantum system that is mixing must be ergodic, similar to
classical dynamics. As we show in the following, condition
(1) can lead to the usual intuitive understanding of ergodicity:
the long-time average equals the ensemble average. With
both conditions, Eq. (1) and Eq. (2), one can show that the
so-defined mixing indeed means a small time fluctuation for
an observable.

Suppose that the quantum system is in the initial state
|ψ(0)⟩ =

∑
n cn|φn⟩. After evolving for a period of time

t , the quantum system is in a state described by |ψ(t)⟩ =∑
n cne

−iEnt/!|φn⟩. For an observable Â, its expectation value
at time t is given by

⟨Â(t)⟩ ≡ ⟨ψ(t)|Â|ψ(t)⟩ = trÂρ̂(t), (3)

where ρ̂(t) ≡ |ψ(t)⟩⟨ψ(t)| is the density matrix at time t . Its
long-time average is

⟨Â⟩T ≡ lim
T →∞

1
T

∫ T

0
⟨Â(τ )⟩dτ. (4)

We now introduce a density matrix:

ρ̂mc ≡
∑

n

|cn|2|φn⟩⟨φn|. (5)

This density matrix does not change with time and it can be
regarded as describing a microcanonical ensemble [3,5,15].
This allows us to define the ensemble average as

⟨Â⟩E ≡ trÂρ̂mc. (6)

For a quantum system satisfying condition (1), it is easy to
check that [3,8] (see also Appendix B)

⟨Â⟩E = ⟨Â⟩T ; (7)

that is, the long-time average of Â equals its microcanonical
ensemble average.

For a quantum system satisfying both conditions, Eq. (1)
and Eq. (2), one can prove [5,28] that the long-time averaged
fluctuation F 2

A satisfies (see also Appendix B)

F 2
A ≡ ⟨|⟨Â(t)⟩ − ⟨Â⟩E|2⟩T

∥Â∥2
! trρ̂2

mc, (8)

where ∥Â∥2 = sup{⟨ψ |Â†Â|ψ⟩ : |ψ⟩ ∈ H } is the upper limit
of the expectation value of Â2 in the Hilbert space. This
demonstrates that a mixing quantum system indeed has small
time fluctuations.

A few remarks are warranted here to put our definitions in
perspective.
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Remark 1. Our definitions of ergodicity and mixing for
quantum systems are mathematically very precise. They
do not involve any concepts or assumptions, which are
mathematically ambiguous. Peres made many assumptions
in his definitions [8], which are reasonable but ambiguous
mathematically. In particular, we do not need to define
quantum chaos first as Peres did [8].

Remark 2. Although our definitions appear very mathemat-
ical, as we have shown, they are consistent with the familiar
physical pictures that we have had with ergodicity and mixing
in classical dynamics: ergodicity means that the long-time
average equals the ensemble average; mixing implies small
time fluctuations. Moreover, similarly to the classical case, a
quantum mixing system is ergodic, but not vice versa.

Remark 3. Our definitions have their roots in the 1929 paper
where von Neumann proved a quantum ergodic theorem [3].
However, in 1929 von Neumann did not distinguish ergodicity
and mixing. His view of ergodicity at that time is closer to the
current view of mixing. In other words, his quantum ergodic
theorem might be better called the quantum mixing theorem.

It is worthwhile to note two interesting points: (i) von
Neumann used both condition (1) and condition (2) to prove
his quantum ergodic theorem; and (ii) mixing in classical
dynamics was introduced three years later, in 1932, by von
Neumann himself [11].

Remark 4. The density matrix ρ̂mc is used as the micro-
canonical ensemble in the above discussion. It is not the
standard microcanonical ensemble found in textbooks [2],

ρ̂tb = 1
N

∑

En∈[E,E+δE]

|φn⟩⟨φn|, (9)

where N is the number of energy eigenstates in the energy
interval [E,E + δE]. However, we can certainly choose an
initial state such that |cn|2 = 1/N for En ∈ [E,E + δE] and
|cn| = 0 otherwise. In this way, we recover the textbook
microcanonical ensemble ρ̂tb. That is, ρ̂tb is just a special case
of ρ̂mc.

Remark 5. Our definitions of ergodicity and mixing for
quantum systems are independent of the initial conditions.
Nevertheless, to thoroughly understand them, we do need to
consider initial conditions, as the density matrix ρ̂mc depends
on the initial conditions. While Eq. (7) and Eq. (8) hold for
an arbitrary initial condition, not all of the initial conditions
are of physical interest. If we choose an initial state where
only a few eigenstates are occupied, not only is it no longer
sensible to regard ρ̂mc as a microcanonical ensemble, but also
the fluctuation F 2

A in Eq. (8) is not small. However, this kind
of initial condition is hard to realize in experiments or to
find in nature for a many-body quantum system. Physically,
when a many-body quantum system is excited by a practical
means, it usually enters into a quantum state where a large
number of eigenstates are occupied. This is also the reason
that the standard microcanonical ensemble ρ̂tb, which looks
quite artificial, works well as long as the system is large.

This aspect is quite similar to classical systems. In an
ergodic or mixing classical system there always exist solutions
which are not ergodic or mixing, for example, the periodic
orbits. However, these nonergodic or nonmixing solutions are

rare or have measure 0 in rigorous mathematical language so
that the overall properties of the system are not affected.

Remark 6. Many quantum systems have certain symmetries
and, correspondingly, some good quantum numbers. Energy
degeneracy can easily occur between the eigenstates of dif-
ferent symmetric sectors. As a result, these quantum systems
are in general not ergodic and mixing. However, if one focuses
only one symmetric sector, the quantum system can be ergodic
or mixing. In this case, we may say that the quantum system
is ergodic or mixing in a sub-Hilbert space.

Remark 7. Although classical ergodicity and mixing are
of fundamental importance in statistical mechanics, their
definitions can be applied to single-particle systems. Similarly,
our definitions can be applied to single-particle quantum
systems.

To conclude our definitions we offer two simple and il-
lustrative examples. The first is the one-dimensional harmonic
oscillator. There is no energy degeneracy so it is ergodic. There
is a great deal of degeneracy in energy spacings so that it
is not mixing. Interestingly, for the classical dynamics, the
one-dimensional harmonic oscillator is similar: it is ergodic
but not mixing.

The second example is a particle in a one-dimensional box
system, where there is degeneracy neither in energy levels nor
in energy spacings. According to our definitions, it is both
quantum ergodic and mixing. It is not difficult to find that its
classical counterpart is indeed both ergodic and mixing [29].

C. Degeneracy parameters

There has been a tremendous amount of work on quantum
chaos or quantum nonintegrability [30]. It is interesting to see
how our quantum ergodicity or mixing is related to quantum
chaos. In other words, are the two conditions, Eq. (1) and
Eq. (2), easy to satisfy in quantum chaotic systems?

On the other hand, it is also interesting to know how
infrequent exceptions to these two conditions affect quantum
dynamics. When a quantum system has a relatively small
number of degeneracies, then almost all of its states contain
either no degenerate eigenstates or only a few. For the former,
Eq. (7) still holds; for the latter, the left-hand side of Eq. (8)
differs from the right-hand side only slightly. So, in a practical
sense, this quantum system is ergodic. The situation is similar
for mixing: infrequent degeneracy in the energy gap is not
important. von Neumann had a similar point of view [3]. Short
and Farrelly showed quantitatively how infrequent degeneracy
is not important [31].

To address the above two issues, we introduce two pa-
rameters, ζ and ξ , which describe the average degeneracy
in energy levels and average degeneracy in energy level
spacings, respectively, for a given finite set of energy levels.
The parameter ζ is defined as

ζ = 1
N

∑

m,n

(
δEm,En

− δm,n

)
, (10)

where N is the number of energy levels in the set. The other
parameter, ξ , is defined as

ξ = 1
N (N − 1)

∑

k ̸=l,m̸=n

(
δEk−El,Em−En

− δk,mδl,n

)
. (11)
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Furthermore, it is useful to define two distribution functions,
f (ϵ) and g()). f (ϵ) is the probability of the eigenenergies
having value ϵ; g()) is the probability of the energy level
spacings at ). With the aid of these distribution functions, we
can reformulate the definitions of ζ and ξ , respectively, as

ζ = N
∑

ϵ

f 2(ϵ) − 1, (12)

ξ = N (N − 1)
∑

)

g2()) − 1. (13)

These two functions are clearly related; their explicit relation
is

g()) =
∑

ϵ

f (ϵ)
Nf (ϵ + )) − δ),0

N − 1

= N

N − 1

∑

ϵ

f (ϵ)f (ϵ + )) − δ),0

N − 1
. (14)

We clarify that in our definition ) can be negative. In other
words, for two arbitrary energy levels, Em and En, with m ̸= n,
Em − En and En − Em give rise to two energy level spacings
rather than one. We also emphasize that our definitions of ζ
and ξ are for a given set of energy levels, not for all the energy
levels in the system. The reason is that only a finite set of
energy levels is involved in any meaningful physical process.

According to these definitions, the two conditions, Eq. (1)
and Eq. (2), are equivalent to ζ ≡ 0 and ξ ≡ 0, respectively.
The larger ζ (or ξ ) is, the more strongly the nondegenerate-
energy condition, Eq. (1) [or the nondegenerate-gap condition,
Eq. (2)], is violated. We anticipate that for small ζ and ξ
quantum systems can still be regarded as ergodic or mixing.
For systems where ζ and ξ are strictly equal to 0, we say that
they are ideal ergodic systems or ideal mixing systems.

III. MODEL

In this section we use an example to illustrate our concepts
of quantum ergodicity and mixing. We consider the motion
of one particle with mass m in a right triangular billiard, as
shown in Fig. 1. Mathematically, this billiard is described by
the following potential

V (x,y) =
{

0 0 < x < l, 0 < y < αx,

∞ otherwise.
(15)

Without loss of generality, we restrict ourselves to α " 1 or
0 < θ ! π/4 (α = cot θ ). It is interesting to note that this
billiard system is equivalent to the system of two hard-core
particles moving in a one-dimensional square potential with
infinite walls [7].

We choose this simple model for two reasons. (i) We
can study both the integrable cases and the chaotic cases
by adjusting α. (ii) Many meaningful results on classical
ergodicity and mixing in this model have been obtained
previously [6,7], and we can compare them to our quantum
results. Other models such as the Bose-Hubbard model [32]
do not have the above advantages.

FIG. 1. A right-triangle billiard. Without loss of generality, we
take α " 1 or, equivalently, 0 < θ ! π/4.

The classical integrability of this model is well known.
The system is integrable only when θ = π/4 or θ = π/6
(equivalently, α = 1 or α =

√
3). When θ = πM/N , where M

and N are two coprime integers and (M,N) ̸= (1,4),(1,6), the
system has two independent invariants. However, it is regarded
as pseudointegrable [33– 35] because the invariant surface of
classical motion in phase space has a genus 2 ! g < ∞ (it is
integrable only when the genus g = 1). For all other values of
θ , the triangle system has only one invariant and is generally
regarded as chaotic.

To study the quantum dynamics of this model, we need to
calculate the eigenenergies and eigenstates. This can be done
only numerically for an arbitrary value of parameter α. We use
the exact diagonalization method (see Appendix A for details).
In our calculation, we choose h = m = l = 1. In addition, to
avoid confusion, we use the single parameter α (instead of θ )
to represent the shape of the triangle billiard in the following
discussion.

IV. DISTRIBUTIONS OF ENERGY LEVELS

In Sec. II we have defined quantum ergodicity and mixing
with two conditions, Eq. (1) and Eq. (2), regarding the
distribution of the system’s energy levels. In this section, we
examine to what extent these two conditions are satisfied by
the triangle billiard and how they are related to the integrability
of this model via parameters ζ and ξ . In the next section, we
show that the quantum dynamics of the triangle billiard are
dictated by these two conditions.

The study of quantum chaos has revealed that the structure
of quantum energy levels of a system is closely related to
the classical integrability of the system [8,36]. One often uses
the nearest spacing distribution (NSD) p(s) of a system to
describe its structure of quantum energy levels, where s > 0 is
the spacing between two nearest energy levels. The following
feature of the NSD is well known. For a system whose
classical dynamics is integrable, its NSD is Poisson-like, with
a peak distribution at s = 0. For a system whose classical
dynamics is chaotic, the NSD of its quantum energy levels is
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FIG. 2. Nearest spacing distribution of eigenenergies. (a) α = 1 and (b) α =
√

3 are two integrable cases. (c) α = cot(π/5) is
pseudointegrable. (d) α = tan

√
5−1
4 π is chaotic. Calculations are done for the first 1000 energy levels.

Wigner-like: an almost-zero probability density at s = 0 and
a peak density at s = sm ̸= 0. This feature indicates that
condition (1) is always satisfied by a quantum chaotic system.
There is no clear conclusion for condition (2), as the peak
at nonzero s in the Wigner distribution seems to suggest that
Eq. (2) is not satisfied by a quantum chaotic system. However,
our following numerical results show that condition (2) is also
largely satisfied by a quantum chaotic system.

The Hamiltonian matrix of the triangle billiard is diagonal-
ized numerically for a set of α. Its NSDs for the first 1000
energy levels are shown in Fig. 2 for four typical values of α.
As expected, two integrable cases, α = 1 and α =

√
3, have

lots of degenerate energy levels, while the pseudointegrable
and chaotic cases have few.

With the obtained eigenenergies we can compute ζ and ξ ,
the two parameters that we introduced to describe quantita-
tively how well the two conditions, Eq. (1) and Eq. (2), for
ergodicity and mixing are satisfied in a given system. We first
construct the two distribution functions f (ϵ) and g()) and then
compute ζ and ξ using Eq. (12) and Eq. (13). The distribution
function f (ϵ) together with g()) is constructed by binning
the energy levels with a width δϵ = !/T , where T is the total
time of a dynamical evolution. For a dynamical evolution of
time T , energy levels or spacings separated by δϵ = !/T can
be regarded as the same. In our calculation, we use T = 40 in
accordance with our numerical study of quantum dynamics in
the next section.

The results are listed in Table I, where we see clearly that
the values of ζ and ξ are strongly correlated with the classical
integrability of the system. For integrable systems, both ζ and ξ

are large. As α changes and the system becomes more chaotic,
ζ decreases almost to 0, while ξ is reduced by about two
orders of magnitude. These numerical results strongly suggest
that the conditions, Eq. (1) and Eq. (2), are largely satisfied by
chaotic systems.

The pseudointegrable systems are subtle. As one may al-
ready have noted in Fig. 2(c) and Table I, the pseudointegrable
case α = cot π/5 behaves very much like a chaotic system.
However, not all pseudointegrable systems has a chaotic NSD.

TABLE I. Degeneracy parameters ζ and ξ for different values of
α. The first 1000 energy levels are used in the calculation. Integrable
cases are followed by a superscript asterisk. Clearly, integrable cases
have much larger ζ and ξ .

α ζ ξ

1∗ 0.588 300.89
1.007846 0.032 14.39
1.015675 0 8.86
1.077744 0 8.65
1.154062 0 9.25
1.376382 0 11.04
1.461725 0 11.72
1.662013 0.002 13.33
1.700000 0.004 13.89
1.718079 0.010 18.84
1.725067 0.084 40.85
1.732051∗ 0.414 167.03
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Some pseudointegrable triangle billiards, such as the triangle
with angles (π/5,2π/5,2π/5), have Possion-like NSDs [37].
Because the peaks of their NSDs p(s) are at s = 0, which
indicates large degeneracy, these triangle billiards should have
large ζ and ξ , and they are not ergodic or mixing. This
difference shows that the relation between quantum ergodicity
and mixing and classical integrability is very subtle in the case
of pseudointegrable systems.

V. QUANTUM DYNAMICAL BEHAVIOR

In this section we study the quantum dynamics of the
triangle billiard for a set of typical values of α to see whether
it exhibits ergodic or mixing behavior as described by Eq. (7)
or Eq. (8), respectively, and how these dynamical behaviors
are dictated by conditions (1) and (2) via parameters ζ and ξ .

To study the quantum dynamical behavior, we need to
calculate the time evolution of a wave function. We use
the method of eigenstate expansion. For an arbitrary initial
wave function ψ(x,y,0), we expand it in terms of the energy
eigenstates of the Hamiltonian φk(x,y),

ψ(x,y,0) =
∑

k

ckφk(x,y). (16)

According to the Schrödinger equation, the time evolution of
this initial wave function is given by

ψ(x,y,t) =
∑

k

cke
−iEk t

! φk(x,y). (17)

As the expansion coefficients can be calculated easily as

ck =
∫∫

-1

ψ(x,y,0)φ∗
k (x,y)dxdy, (18)

once we have obtained the expansion coefficients ck , we can
generate the wave function at any time. In our study, we choose
a Gaussian wave packet as an initial state,

ψ(x,y) = 1√
4πσ 2

e− 1
4σ2 [(x−x0)2+(y−y0)2]e−i2π(pxx+pyy), (19)

where x0 = 0.5, y0 = 0.3, px = 5 cos(eπ ), py = 5 sin(eπ ),
and σ = 0.02. This initial state mainly occupies the first 1000
energy eigenstates.

It is sufficient to focus on the momentum of the system.
For the initial condition in Eq. (19) we have exactly ⟨p⃗⟩E = 0.
The quantum dynamical evolutions of p⃗ are shown in Fig. 3
for four typical values of α: α = 1, α =

√
3, α = cot π/5, and

α = tan
√

5−1
4 π . It is clear that the evolution of p⃗ varies greatly

with different values of α. Before we discuss it in detail, let
us first recall the classical dynamics for these four cases. The
cases with α = 1 and α =

√
3 are integrable; α = cot π/5 is

pseudointegrable and has only finite directions of p⃗ in classical
dynamics, which means nonergodicity. The case with α =
tan

√
5−1
4 π is nonintegrable but classically nonergodic [7].

Let us return to the quantum dynamics in Fig. 3. For the two
integrable cases, the long-time average is apparently not equal
to its microcanonical ensemble average, and the fluctuation is

FIG. 3. Evolution of the momentum for different α values.
α = 1 and α =

√
3 are two integrable cases. α = tan

√
5−1
4 π is

chaotic but nonergodic in classical mechanics [7]. α = cot π/5 is
pseudointegrable.

large as well. For other cases, the momentum quickly relaxes
to its microcanonical ensemble average and has only small
fluctuations. The relaxation time is very short and is about ∼
10−1 in these cases. Up to t = 40, we do not observe a revival
or large deviation from the equilibrium value. These results
demonstrate that the quantum dynamics for α = cot π/5 (the
pseudointegrable regime) and α = tan

√
5−1
4 π are not only

ergodic but also mixing. This is in stark contrast with their
classical dynamics, which are not even ergodic. This suggests
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FIG. 4. Averaged relative fluctuations of the momentum via α.
The vertical axis F 2 indicates the averaged relative fluctuation as
defined in Eqs. (8) and (21). Filled circles are the numerical results;
the solid line is a guide for the eyes; the dashed line is the upper
bound trρ2

mc in Eq. (8).

that it is easier to have quantum ergodicity and mixing than in
their classical counterparts.

In order to check quantitatively whether a quantum system
is mixing, we need to calculate the time-averaged relative
fluctuation. The averaged deviation of the momentum operator
p⃗ in a given evolution time T is

〈
σ 2

p⃗

〉
T

= 1
T

∫ T

0

∣∣∣∣∣⟨ψ(t)|p⃗|ψ(t)⟩ −
∑

k

∣∣c2
k

∣∣⟨φk|p⃗|φk⟩
∣∣∣∣∣

2

dt.

(20)

Considering E = p⃗2

2 , the relative fluctuation of p⃗ is

F 2 =
〈
σ 2

p⃗

〉
T

|p⃗|2
=

〈
σ 2

p⃗

〉
T

2E
. (21)

The relaxation time scale is ∼ 10−1 and the oscillating period
for integrable systems is ∼ 101. Considering that a longer
evolution time may lead to a large numerical error and
unreliable result, we choose T = 40. This time length is much
longer than the relaxation time, and it is also long enough for
us to see if there are frequent recurrences.

The results of relative fluctuation for different values of α
are shown in Fig. 4. The dashed line represents trρ2

mc, the upper
bound in Eq. (8). It can be clearly seen that for α away from
1 or

√
3, the averaged fluctuation is small, and the inequality,

Eq. (8), is satisfied. This confirms the intuitive picture in Fig. 3
that the quantum dynamics is mixing. When α approaches
the two integrable cases, α = 1 and α =

√
3, the averaged

fluctuation becomes much larger, and the inequality, Eq. (8),
is violated. In fact, in these two integrable cases, the averaged
fluctuation reaches two local maxima. There is a rather rapid
transition from mixing to nonmixing while the system is tuned
from nonintegrable to integrable.

The quantum dynamic behavior shown in Fig. 3 is dictated
by conditions(1) and (2). This is shown clearly in Fig. 5,
where the square of the time-averaged momentum ⟨p⃗⟩2

T and

FIG. 5. (a) The square of time-averaged p⃗ at T = 40 with
different ζ values. The vertical axis is on log scale. Note that
⟨p⃗⟩E = 0. (b) Averaged relative fluctuation vs ξ . No mixing when
F 2/trρ2

mc > 1.

its relative fluctuations are plotted against the two degeneracy
parameters, ζ and ξ , respectively. It is clear from the figure that
for systems with significantly nonzero ζ , the time average of
the momentum significantly deviates from the microcanonical
ensemble value. We can see a strong positive correlation
between the relative fluctuation F 2/trρ2

mc and ξ as well. These
results illustrate that systems with small ζ and ξ have ergodic
and mixing quantum dynamics, respectively. Our definitions
of quantum ergodicity and mixing with conditions (1) and (2)
are legitimate.

VI. DISCUSSION AND CONCLUSION

Let us summarize what we have done. We have given
our own definitions of ergodicity and mixing for quantum
systems with conditions (1) and (2). It can be rigorously
proved that these two conditions lead to quantum dynamical
behaviors which are described by Eq. (7) and Eq. (8) and
are reminiscent of classical ergodic and mixing dynamics,
respectively. Through an example, the triangle billiard, we
have further shown that although both conditions, Eq. (1)
and Eq. (2), which are characterized by ζ and ξ , are related
to classical integrability, there are differences. The most
important is that a system whose classical dynamics is neither
ergodic nor mixing can be both ergodic and mixing in its
quantum dynamics.

Classical dynamics has an ergodic hierarchy [1,12,13],
which is

Bernoulli ⊂ Kolmogorov ⊂ Mixing ⊂ Ergodic. (22)

Now mixing and ergodicity have their quantum counterparts.
In particular, we have a similar relation: quantum mixing
systems are a subset of quantum ergodic systems. It is possible
to expand this quantum ergodic hierarchy to three. We define
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FIG. 6. Evolution of the entropy Sw for different values of α.

a quantum system as H mixing if the system satisfies

Em + En − Ek − El = Em′ + En′ − Ek′ − El′ and

{m,n} ∩ {k,l} = ∅ ⇒ {m,n} = {m′,n′}{k,l} = {k′,l′} .

(23)

The “H” indicates the relation with quantum H theorem,
which we show below. This condition implies that there is
no degeneracy in the gaps of energy gaps. One can find the
full implication of this condition in Ref. [15]. Here we briefly
summarize. The entropy for a quantum pure state ρ̂ ≡ |ψ⟩⟨ψ |
is defined as [15]

Sw ≡ −
∑

qi , pj

⟨ψ |W qi , pj
|ψ⟩ ln⟨ψ |W qi , pj

|ψ⟩

≡ −
∑

qi , pj

tr
(
ρ̂W qi , pj

)
ln tr

(
ρ̂W qi , pj

)
, (24)

where W qi , pj
≡ |wqi , pj

⟩⟨wqi , pj
| is the projection onto Planck

cells in quantum phase space at position qi and momentum
pj , and {|wqi , pj

⟩} is a complete set of Wannier functions. This
entropy Sw will change with time. An inequality regarding
the relative fluctuation of entropy Sw, similar to Eq. (8), was
proved in Ref. [15] with condition (23). This inequality means
that a quantum system with a low entropy Sw will relax
dynamically to a state whose entropy Sw is maximized and
stay at this maximized value with small fluctuations. This is
illustrated by the triangle billiard in Fig. 6. In this figure we
see that the entropy Sw of the integrable cases, for which
condition (23) is not satisfied, fluctuates periodically with
high amplitude and does not stay at the maximum value. For
cases with α = tan

√
5−1
4 π and α = cot π/5, where Eq. (23) is

largely satisfied, the entropy quickly relaxes to the maximum
value and stays there with small fluctuations. These results
demonstrate that a quantum system that satisfies condition
is capable of equilibrating to a state where not only do its
observables fluctuate around its equilibrium value at low
amplitude, but also its entropy is maximized. This is what
quantum H theorem states and, thus, the reason that we call
such a quantum system H mixing. In this way we have a
quantum ergodic hierarchy:

H mixing ⊂ Mixing ⊂ Ergodic . (25)

We do not call it quantum Kolmogorov, as we do not see
an apparent connection to the classical Kolmogorov mixing
system at this moment. It would be very interesting to find a
quantum system which is H mixing but not mixing.

Finally, we conclude with expectations of future work
to follow. We have given precise definitions of quantum
ergodicity and mixing which are in accordance with our
usual understanding of ergodicity and mixing. We have
illustrated with single-particle billiard systems. It would be
very interesting to further examine them in true many-body
quantum systems [32,38], where the thermodynamics limit
can be considered.
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APPENDIX A: CALCULATION OF EIGENENERGIES
AND EIGENSTATES IN TRIANGLE BILLIARDS

We use the exact diagonalization method to calculate the
eigenenergies and eigenstates: (i) choose an appropriate basis
set; (ii) calculate the Hamiltonian matrix elements in the basis;
and (iii) carry out numerical diagonalization, which results in
the eigenenergies and eigenstates.

In order to reduce the numerical error to an acceptable
range, we choose the basis as follows:

|m,n⟩ = 2
l
√

α

(
sin

mπx

l
sin

nπy

αl
− sin

nπx

l
sin

mπy

αl

)
.

(A1)

This choice is similar to that in Ref. [37]. This basis is complete
and orthogonal. It is easy to check that all these base functions
|m,n⟩ are 0 on the boundaries of the triangle. The elements of
the Hamiltonian matrix can be computed analytically,

⟨m1,n1|Ĥ |m2,n2⟩ = h2

2ml2

{(
m2

2 + n2
2

α2

)
[I (m1,n1,m2,n2) − I (n1,m1,m2,n2)]

−
(

n2
2 + m2

2

α2

)
[I (m1,n1,n2,m2) − I (n1,m1,n2,m2)]

}
, (A2)
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where
I (m,n,p,q)

=
∫ 1

0
dx

∫ x

0
dy sin(mπx) sin(nπy) sin(pπx) sin(qπy)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8

if m = p and n = q,

1
8π2 (1 − (−1)m+n+p+q )

[
− {p − m + n + q}−1 + {q + n − p + m}−1 − {p + m + n + q}−1 − {n + q − p − m}−1

q + n

+ 2
(m + p)2 − 2

(m − p)2

]
if m ̸= p and n = q,

1
8π2 (1 − (−1)m+n+p+q )

[
− {p − m + n + q}−1 + {q + n − p + m}−1 − {p + m + n + q}−1 − {n + q − p − m}−1

q + n

+ {p − m + q − n}−1 + {q − n − p + m}−1 − {m + p + q − n}−1 − {q − m − n − p}−1

q − n

]
if m ̸= p and n ̸= q,

(A3)

with the curly braces, {·}−1, representing

{z}−1 =
{

0 if z = 0,

1
z

if z ̸= 0.
(A4)

This notation is used only in Eq. (A3) to simplify the
expression.

After the above derivation, we take a cutoff in n1, n2, m1,
m2 and choose h = m = l = 1 to calculate the elements of
Hamiltonian matrix. The eigenenergies and eigenstates can be
obtained after diagonalization of the Hamiltonian matrix. As
the elements of the Hamiltonian matrix are explicit, the error of
the eigenenergies and eigenstates mainly arises from the cutoff
of n1, n2, m1, m2. In our calculation, the number of basis is set
as 8500. Changing this number from 6000 to 10 000 causes
only an ∼ 0.01% relative variation in eigenenergies (in units of
h2/ml2). This indicates that the error in the numerical results
of eigenenergies is around 0.01%, which is accurate enough
for our analysis.

APPENDIX B: PROOFS OF LONG-TIME QUANTUM
ERGODIC AND MIXING BEHAVIORS, EQ. (7) AND EQ. (8)

In this Appendix we provide the proofs of Eq. (7) and
Eq. (8), which concern the long-time ergodic and mixing
behavior in quantum systems, respectively. The original
versions of the proofs can be found in Refs. [3,5,8,28].

Consider a quantum system that starts with the initial
condition

|ψ(0)⟩ =
∑

n

cn |φn⟩ , (B1)

where the |φn⟩’s are the energy eigenstates. At time t , the wave
function becomes

|ψ(t)⟩ =
∑

n

cne
−iEnt/! |φn⟩ . (B2)

The corresponding density matrix is then

ρ̂(t) = |ψ(t)⟩ ⟨ψ(t)|

=
∑

m,n

ρnme−i(En−Em)t/! |φn⟩ ⟨φm| , (B3)

where ρnm = c∗
mcn. In an ergodic system where condition (1)

is satisfied, we have

⟨ρ̂(t)⟩T =
〈
∑

m,n

ρnme−i(En−Em)t/!|φn⟩⟨φm|
〉

T

=
∑

m,n

ρnm⟨e−i(En−Em)t/!⟩T |φn⟩⟨φm|

=
∑

m,n

ρnmδEn,Em
|φn⟩⟨φm|

=
∑

m,n

ρnmδn,m|φn⟩⟨φm|

=
∑

m

ρmm|φm⟩⟨φm|

= ρ̂mc, (B4)

which is exactly the microcanonical ensemble that we intro-
duced in Eq. (5). Therefore, for an observable Â,

⟨Â⟩T = ⟨trÂρ̂(t)⟩T = tr[Â⟨ρ̂(t)⟩T ] = trÂρ̂mc = ⟨Â⟩E. (B5)

This is the proof of Eq. (7).
We now compute the standard deviation of Â:
〈
σ 2

A

〉
T

= ⟨|⟨Â(t)⟩ − ⟨Â⟩E|2⟩T
= ⟨|⟨Â(t)⟩|2⟩T − |⟨Â⟩E|2

=
∑

k ̸=l,m̸=n

ρ∗
lkρnm⟨e−i[(En−Em)−(El−Ek )]/!⟩T AmnA

∗
kl .

(B6)

When the quantum system is mixing, that is, both condition
(1) and condition (2) are satisfied, we have

〈
σ 2

A

〉
T

=
∑

k ̸=l,m̸=n

ρklρnmδEn−Em,El−Ek
AmnAlk

=
∑

k ̸=l,m̸=n

ρklρnmδmkδnlAmnAlk

=
∑

m̸=n

ρmnρnmAmnAnm
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=
∑

m,n

|cm|2|cn|2AmnAnm −
∑

n

|cn|4|Ann|2

!
∑

m,n

ρmmρnnAmnAnm

= trÂρ̂mcÂ
†ρ̂mc = tr[(ρ̂mcÂ

†)†(Â†ρ̂mc)], (B7)

where we have used Amn = ⟨φm|Â|φn⟩. We define a scalar
product for two operators, P̂ and Q̂, as tr(P̂ †Q̂). Using the
Cauchy-Schwartz inequality for operators with such a scalar
product, we have [28]

〈
σ 2

A

〉
T

!
√

tr[(ρ̂mcÂ†)†(ρ̂mcÂ†)]tr[(Â†ρ̂mc)†(Â†ρ̂mc)]

=
√

tr
(
Â†Âρ̂2

mc

)
tr
(
ÂÂ†ρ̂2

mc

)

! ∥Â∥2trρ̂2
mc, (B8)

where ∥Â∥2 = sup{⟨ψ |Â†Â|ψ⟩ : |ψ⟩ ∈ H } is the upper limit
of the expectation value of Â2 in the Hilbert space. Finally, we
have for the fluctuation

F 2
A ≡

〈
σ 2

A

〉
T

∥Â∥2
= ⟨|⟨Â(t)⟩ − ⟨Â⟩E|2⟩T

∥Â∥2
! trρ̂2

mc. (B9)

This is the proof of Eq. (8).
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