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Self-similarity among energy eigenstates
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In a quantum system, different energy eigenstates have different properties or features, allowing us to define a
classifier to divide them into different groups. We find that the ratio of each type of energy eigenstate in an energy
shell [Ec − �E/2, Ec + �E/2] is invariant with changing width �E or Planck constant h̄ as long as the number
of eigenstates in the shell is statistically large enough. We give an argument that such self-similarity in energy
eigenstates is a general feature for all quantum systems, which is further illustrated numerically with various
quantum systems, including circular billiard, double top model, kicked rotor, and Heisenberg XXZ model.
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I. INTRODUCTION

Energy eigenvalues and eigenstates are constitutive to
the properties of quantum systems. They have already been
thoroughly studied in various aspects. For eigenvalues, the
well-known results include the Weyl law [1] and its gen-
eralization [2–10], which describes the asymptotic behavior
of the number of energy eigenvalues below an increasing
energy. The distribution of nearest energy level spacings
[11–17] is now widely used to characterize quantum sys-
tems: Wigner-Dyson distribution for chaotic systems and
Poisson distribution for integrable systems. The degeneracy
in eigenenergies and their differences has been shown to be
related to ergodicity and mixing in quantum systems [18–20].

For energy eigenstates, there are also many interesting
results. These earliest studies have focused on the correla-
tion and amplitude distribution of a single energy eigenstate
[11,21–27]. This line of studies ultimately leads to a well-
known hypothesis by Berry: Each energy eigenstate has a
Wigner function concentrated on the region explored by a
typical orbit over infinite times in the semiclassical limit,
or, equivalently, each energy eigenstate becomes a minimal
invariant ensemble distribution in classical phase space in the
semiclassical limit [28]. Recently, there have been studies on
the single energy eigenstate in spin systems, which have no
well-defined semiclassical limit [29–35].

In this work we focus on a sequence of energy eigenstates
in an energy shell S (Ec,�E ) = [Ec − �E/2, Ec + �E/2].
As these eigenstates have different physical properties or
features, we define a classifier for a given physical prop-
erty or feature and divide these eigenstates into different
groups. We find self-similarity among energy eigenstates
for all quantum systems in the following sense: If the ra-
tio of the energy eigenstates having property A is f in
the energy shell S (Ec,�E ), then the ratio is still f in the

*These two authors contributed equally to this work.

subshell S (E ′
c,�E ′) ⊂ S (Ec,�E ) as long as the number of

eigenstates in the subshell is statistically large enough. The
self-similarity is particularly pronounced in the semiclassical
limit h̄ → 0, where the number of eigenstates in a very narrow
energy shell is very large.

We first illustrate such self-similarity with a simple model,
circular billiard with analytical results, and extensive numeri-
cal computation. We then give an analysis, arguing that such
self-similarity is a generic feature for any quantum system
that has a well-defined semiclassical limit. We finally illus-
trate the self-similarity with more examples, which include
coupled tops, kicked rotor, and the Heisenberg XXZ model.
The result for the XXZ model is of particular interest as it
shows that the self-similarity exists even in quantum systems
that have no well-defined semiclassical limits. In the end, we
argue that such a self-similarity offers a good explanation why
the microcanonical ensemble in quantum statistical mechan-
ics, which is established on the equal probability hypothesis,
works for all quantum systems regardless of their integrability.

II. SELF-SIMILARITY IN ENERGY EIGENSTATES

Before general discussion, we study a simple but il-
lustrative example, a quantum circular billiard [36], where
the self-similarity in its energy eigenstates can be demon-
strated convincingly through analysis and extensive numerical
calculation.

A. Circular billiard

For a quantum particle of mass M moving in a circular
billiard of radius R0, its energy eigenstates can be expressed
analytically in terms of the Bessel function Jm,

ψnm(r, θ ) = 1√
πR0|J ′

m(knmR0)|Jm(knmr)eimθ , (1)

where n is the radial quantum number and m is the angular
quantum number with knm being determined by the boundary
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FIG. 1. Circular billiard. (a) A typical quantum energy eigen-
function |ψnm + ψn,−m|2/2, (b) a typical classical trajectory, and
(c) the square of a Bessel function Jm(knmr) with Rb indicated. In
this figure, n = 7 and m = 12.

condition

Jm(knmR0) = 0. (2)

It is clear that |ψnm〉 and |ψn,−m〉 are degenerate with the same
eigenenergy of Enm = h̄2k2

nm/(2M ). For simplicity, we choose
the units in which h̄ = M = 1 in the following discussion.

A typical energy eigenfunction is plotted in Fig. 1(a). An
obvious feature is that the eigenfunction |ψnm〉 (or any linear
superposition of |ψnm〉 and |ψn,−m〉) is almost zero inside a
circle of a certain radius Rb. The corresponding classical mo-
tion has a similar “blank region.” As one can see clearly from
Fig. 1(b), for a classical particle bouncing elastically inside the
circular billiard, if its initial angular momentum is MvRb, then
it never moves inside the circle of radius Rb. Since the motion
of a classical particle in a billiard is independent of the size of
its momentum Mv, the radius Rb of such a blank region can
be regarded as a kind of normalized angular momentum. With
this understanding in mind, for an energy eigenstate |ψnm〉, we
define a normalized angular momentum �nm as

�nm = 〈ψnm|Lz|ψnm〉√
2Enm

= m

knm
. (3)

As indicated in Fig. 1(c), �nm defined in such a way can be
regarded as the radius of the “blank region” of |ψnm〉.

Our discussion above shows that the radius �nm can be
used to characterize the eigenstate |ψnm〉. To be precise, we
introduce a classifier,

C(Rb; |ψnm〉) =
{

1 if 0 < �nm < Rb,

0 if Rb � �nm < R0.
(4)

It says that if the radius Renm of an eigenstate |ψnm〉 is
smaller than Rb, then C(Rb; |ψnm〉) = 1; otherwise, it is zero.
We consider an energy shell S (Ec,�E ) = [Ec − �E/2, Ec +
�E/2], which is centered at Ec and with a width of �E . We
are interested in how many eigenstates in the shell S (Ec,�E )
have their blank region radii �nm < Rb. For this purpose, we

FIG. 2. (a) Ratio f (R0/2; Ec, �E ) as a function of �E . (b) Ratio
f (R0/2; Ec, �E ) as a function of Rb/R. In this numerical results,
we take h̄ = 1 and fix kc = 515 (corresponding Ec = k2

c /2), while
changing �k from 0.1 to 5 (corresponding �E = 2kc�k). The
narrowest energy window (i.e., �k = 0.2) has merely 28 energy
eigenstates, and thus �k cannot be further narrowed. Here we plot
the ratio of energy eigenstates with “blank region radius” less than Rb

vs. Rb. Except for �k = 0.1 and 0.25 (i.e., energy window is too nar-
row), other curves (with moderate or large energy window) embody a
perfect self-similarity. The black line represents the theoretical result
Eq. (8).

define a ratio

f (Rb; Ec,�E ) =
∑

Enm∈S C(Rb; |ψnm〉)

number of eigenstates in S . (5)

We have numerically computed the ratio f (Rb; Ec,�E ).
One set of the results are plotted in Fig. 2(a), which shows
how the ratio f (Rb; Ec,�E ) changes with �E with Rb fixed
at R0/2. It is clear from this figure that the ratio f stays almost
constant once the shell width �E is large enough. For this
specific example, the figure shows that in a not-too-narrow
energy shell, there are always about 61% of the eigenfunctions
|ψnm〉 whose blank region radius Rb is smaller than R0/2.
This is self-similarity. Figure 2(b) shows that this kind of self-
similarity exists for all values of Rb not just for Rb = R0/2. In
particular, as seen from this figure, the curves f (Rb; Ec,�E )
for different widths �E approach a limiting curve when �E
increases. Note that the above results are not sensitive to the
center Ec of the energy shell as long as it is not too close to
the ground state.

For any quantum system, when h̄ becomes smaller, more
energy eigenstates enter an energy shell S (Ec,�E ) with
fixed center Ec and width �E (see Fig. 3). For this billiard
system, as its eigenenergy Enm = h̄2knm/(2M ), decreasing h̄
reduces the gap between the nearest energy levels and is
roughly equivalent to enlarge the width of energy shell. (See
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FIG. 3. As the Planck constant h̄ becomes smaller, more energy
eigenstates enter a given energy shell. In the semiclassical limit
h̄→0, the energy spectrum becomes continuous.

Appendix A for a detail discussion of the relation between de-
creasing h̄ and increasing �E .) Therefore, the self-similarity
demonstrated in Fig. 2 implies that at the smaller Planck
constant, the fraction of f (Rb; �E ) would get little changed.
Since the system becomes classical in the limit of h̄ → 0,
the limit of the ratio f (Rb; �E ) is likely to have a classical
interpretation. This is indeed the case as we shall see.

Let us consider the classical circular billiard. For a classical
system, the energy shell S (Ec,�E ) specifies a volume in its
phase space. For a billiard system, as its dynamics is the same
for all different energies, we can focus on an isoenergetic
surface in the volume. We define another ratio

g(Rb; E ) =
∫
<Rb

dxdyd pxd py∫
T dxdyd pxd py

. (6)

Here the nominator is the phase-space volume of a constant
energy surface with energy E = p2/2. For the trajectories in
a classical billiard are the same for different momentum, we
take p = 1 for simplicity. The denominator is the volume oc-
cupied by all the trajectories with blank region radius smaller
than Rb. For a trajectory starting at point r = (x, y) in the
circular billiard, it is completely determined by the direction
of its momentum p. For this trajectory to enter the circle of
radius Rb, the direction of its motion must be limited in the
angle α(x, y; Rb) = 2 arcsin(Rb/r), where r =

√
x2 + y2, as

FIG. 4. In a classical circular billiard, for a particle starting at
r = (x, y), only when its direction of motion is limited inside the
angle of α can it enter a circle of radius of Rb. Otherwise, it always
stays outside of the circle.

FIG. 5. Mushroom billiard which is made of a quarter of circle
and a rectangle. For the motion with the blank region radius Rb

smaller than r, the horizontal length of the rectangle, it is chaotic;
otherwise, it is integrable.

shown in Fig. 4. As a result, we have

g(Rb) =
∫

r<Rb
α(x, y; Rb)dxdy

π
∫

0<r<R0
dxdy

. (7)

Evaluating this integral in the polar coordinate, we obtain

g(Rb) = 2

π
(u
√

1 − u2 + arcsin u), (8)

where u = Rb/R0. This theoretical result is plotted as a black
line in Fig. 2(b), where we see that it agrees very well with
our numerical results for f (Rb; Ec,�E ).

The circular billiard is an integrable system, but our re-
sults can be safely generalized for nonintegrable or chaotic
systems. The mushroom billiard in Fig. 5, which is obtained
by adding a rectangular stalk to a quarter of circle, is a
nonintegrable system, which has both integrable motions and
chaotic motions [37]. When the blank region radius or nor-
malized angular momentum Rb is bigger than r, the motion
is integrable; otherwise, it is chaotic. We find that the number
of chaotic energy eigenstates, e.g., the one in the upper-right
corner of Fig. 5, in an energy shell is proportional to the
volume of chaotic trajectories in the classical phase space. For
this system, Rb is an indicator of chaotic motion.

B. General discussion

With the circular billiard, we have found a self-similarity
in energy eigenstates that is intimately related to the classical
dynamics. This is in fact a general feature that exists in all
quantum systems as our analysis below shows.

We consider a general quantum system, which has a well-
defined classical counterpart. Its quantum phase space can be
obtained by dividing the classical phase space into Planck
cells [38] as shown in Fig. 6. An energy shell S (Ec,�E )
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FIG. 6. The schematic of a quantum system approaching its
semiclassical limit h̄ → 0 in phase space. The two black curves
represent two constant energy surfaces with difference �E ; the area
enclosed by them are the volume of a given energy shell S(Ec, �E ).
The dark shaded area is a region where the system has a certain phys-
ical property A. As h̄ decreases toward zero, the Planck cells (squares
in the figure) become smaller. As a result, there are more energy
eigenstates in the energy shell S(Ec,�E ) and more eigenstates have
property A. However, the proportional of energy eigenstates having
property A in the energy shell S(Ec, �E ) quickly approach a limit,
which is the overlap of the energy shell and the dark area.

in phase space is a volume enclosed by two constant energy
surfaces around Ec, which are plotted as two black curves
in Fig. 6. The dark shaded area in the figure is a collection
of all the states (quantum or classical) that have physical
property A. For the above example of the circular billiard,
the property A is the blank region radius smaller than Rb.
According to quantum mechanics, the number of Planck cells
in a phase-space volume is the same as the number of energy
eigenstates [39]. As a result, the number of energy eigenstates
with property A in the energy shell S (Ec,�E ) is equal to the
number of Planck cells in the overlap region, the dark area
between two black curves in Fig. 6. When h̄ decreases, the
Planck cells become smaller so that the number of energy
eigenstates in different categories, e.g., in an energy shell
or having property A, increases. However, the ratio between
numbers in these different categories will quickly saturate
and reach a limit that is set by the ratio between volumes of
corresponding categories in the classical phase space. For the
circular billiard, the former is f (Rb; Ec,�E ) and the latter is
g(Rb; Ec).

The above analysis motivates us to generalize the classifier
C and related ratio f in Eqs. (4) and (5). For a given quantum
system, a classifier C maps its energy eigenstates into binary
value C(|E〉) ∈ {0, 1}, that is, divides the eigenstates into two
groups. Formally, we can write

C(ξ ; |E〉) =
{

0 A(|E〉) < ξ

1 A(|E〉) � ξ
, (9)

where A is a function that characterizes physical property A
of an eigenfunction |E〉 and ξ is a certain value. The choice
of property A and related function A depends on the quantum
system that is being considered. For the circular billiard, we
have chosen the blank region radius Rb and related function
Renm. For a quantum chaotic system, one possible choice
is the effective occupation A(|E〉) = (

∑
x |〈x|E〉|4)−1 [40],

which characterizes how widely a wave function spreads in
space. More examples will be given later. Note that one can
certainly define a classifier that maps the energy eigenstates

into three or more groups. We for simplicity focus on the
above definition.

For an energy shell S (Ec,�E , h̄)={|E〉:E ∈ [Ec − �E/2,

Ec + �E/2]}, with the above classifier, we define the
following ratio:

f (℘, Ec,�E ) =
∑

|E〉∈S C(|E〉)

number of eigenstates in S . (10)

Here ℘ is a parameter that controls the number of energy
eigenstates in the energy shell S (Ec,�E ). When the quantum
system has a well-defined classical limit, ℘ is just the Planck
constant h̄ or the effective Planck constant. The self-similarity
in energy eigenstates means that the ratio f (℘, Ec,�E ) is
independent of the control parameter ℘ and the width �E as
long as the number of eigenstates in the shell S is statistically
large enough. In particular, one can divide the shell S into
many small subshells and tune the control parameter ℘so that
each subshell contains enough energy eigenstates. In this case,
within statistical fluctuations, the ratio f is the same for every
subshell.

The ratio f (℘, Ec,�E ) has a weak dependence on Ec, the
center of the energy shell. By weak dependence, we mean that
f (℘, Ec,�E ) varies with Ec only over a large energy scale.
For systems similar to billiards, whose physical properties do
not change much with energy, their physical properties do
not vary significantly with Ec as long as it is not too close
to the lowest quantum energy. For other systems with phase
transition or other similar transition, the system does change
significantly around the critical values. Consider water as an
example. The physical property of water with Ec/kB around
the boiling temperature is very different from its property with
Ec/kB around the freezing temperature. However, for a quite
large energy range between the freezing and boiling temper-
atures, water is just a normal liquid and its property does
not change much. Therefore, the ratio f (℘, Ec,�E ) changes
only when Ec is around these critical values. In Appendix E,
the Aubry-André-Harper (AAH) model is used to illustrate
this point. It is found that the ratio f (℘, Ec,�E ) changes
significantly only when Ec is around the mobility edge.

For a quantum system with a well-defined classical coun-
terpart, such self-similarity is rooted in the correspondence
between the energy eigenstates and invariant distributions in
classical phase space [28,41]. Without loss of generality, we
choose ℘= h̄ and focus on time-independent systems in the
following discussion. By a well-defined classical counterpart,
we mean that the quantum dynamics starting with a wave
function that is well localized in phase space follows the clas-
sical trajectory in the semiclassical limit h̄ → 0. In the Planck
cell notation [38], such a correspondence can be written as

lim
h̄→0

|〈x′|Û (t )|x〉|2 = δx′,gt x, (11)

in which Û (t ) = e−iĤt/h̄ is the propagator of time evolution
during t while gt is the corresponding classical time evolution
by canonical equations [42]. The basis |x〉 = |Q, P〉 is the
Planck cell basis at a discretized phase space [38]. As a result,
for an energy eigenstate |E〉, we have

lim
h̄→0

|〈x|E〉|2 = lim
h̄→0

|〈x|Û (t )|E〉|2 = lim
h̄→0

|〈g−1
t x|E〉|2. (12)
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FIG. 7. (a) Poincaré sections for the classical coupled top model
with energy Ec = −0.9. [(b)–(f)] are the 3194, 3196, 3198, 3202,
and 3207th energy eigenstates (energy eigenvalues are −0.9018,

−0.9007, −0.8998, −0.8970, −0.8939), respectively, in the quan-
tum phase space. The parameters are μ = 0.5 and Q1 = π .

This shows that at the semiclassical limit, each energy eigen-
states becomes a distribution in phase space which is invariant
under classical dynamics [28,41].

For a classical system, its isoenergetic surface is usually
filled with different invariant distributions, which do not over-
lap with each other [43]. The Poincaré sections in Figs. 7
and 9 offers some glimpses of such a structure: The invariant
distributions represented by the chaotic seas do not overlap
with the distributions represented by smooth lines in inte-
gral islands. Consider an energy shell S with a very small
width �E so that each isoenergetic surface within the shell
is filled with similar nonoverlapping invariant distributions. In
this way, with �E one can legitimately say that an invariant
distribution occupies a volume in phase space. Due to the
quantum-classical correspondence discussed above, these dif-
ferent invariant distributions are the limits of different energy
eigenstates when h̄ goes to zero. As the energy is continuous
in classical mechanics, the energy shell width �E can be
arbitrary small. And for a given width �E , no matter how
small it is, we can always choose a small -enough h̄ so that
there are large number of eigenstates in the shell S , in which
the number of each type of eigenstates is proportional to the
volume of the corresponding invariant distribution. This gives
rise to the self-similarity that we have found in eigenstates.

Our above analysis has been done with quantum systems
that have well-defined classical limits. However, such self-
similarity appears very general and exists in all quantum

systems. This is indicated by our numerical computation in
the next section, where a model of Heisenberg spin chain is
studied. This system has no well-defined classical limit, and
we still find self-similarity in its eigenstates. It is not clear why
self-similarity exists in such quantum systems.

Before we present more examples, we use an analogy to
summarize our finding. For a quantum system, if we regard
each of its energy eigenstates as a small ball, then all the
eigenstates lie on a one-dimensional line in the order of their
corresponding eigenenergies. Such a line has at least one end,
which is the ground state. Suppose that a fraction f of these
balls are red, representing that the corresponding eigenstates
have property A. We find that these red balls are thoroughly
mixed with other balls. As a result, for any segment of line that
contains large number of balls, the fraction of red balls on this
segment is exactly f if we ignore the statistical fluctuations.

In quantum chaotic systems with no apparent symmetries,
degeneracy rarely happens. People often refer to it as energy
level repulsion. Our finding can also be regarded as a repulsion
phenomenon: Energy eigenstates with similarity properties
tend to “repel” each other and scatter rather evenly among
other eigenstates. And this kind of repulsion exists for all
quantum systems, not limited to chaotic systems.

III. EXAMPLES EXHIBITING SELF-SIMILARITY

Below are three examples. The first example, quantum cou-
pled top, is a time-independent system; the second example,
quantum kicked rotor, is a periodically driven system; the third
example, a Heisenberg chain, is a quantum system that has no
well-defined classical limit. Self-similarity in energy eigen-
states is evident in all of them. The third examples suggests
that the self-similarity exists also in quantum systems that
have no well-defined classical limits.

A. Quantum coupled top

The quantum coupled top is a famous model that were used
to study quantum chaos [44,45]. It describes the interaction
between two identical angular momenta, L̂1 and L̂2, which is
governed by the following Hamiltonian [46,47]:

Ĥ = L̂1z + L̂2z + μ

J
L̂1xL̂2x, (13)

where J is the magnitude of the angular momentum and μ

denotes the coupling constant.
This system has a well-defined classical counterpart,

whose Hamiltonian is obtained by simply replacing the oper-
ators L̂1 and L̂2 with two variables of angular momentum, L1

and L2. For the classical model, it is convenient to introduce a
different set of canonical variables,

Li = J
(√

1 − P2
i cos Qi,

√
1 − P2

i sin Qi, Pi
)
, (14)

where i is either 1 or 2. The classical Hamiltonian becomes

H = J
(√

1 − P2
1 cos Q1 +

√
1 − P2

2 cos Q2 + μP1P2
)

(15)

(rigorous derivation of quantum-classical correspondence
is illustrated in Appendix B). The classical dynamics is
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described by the following canonical equations:

Ṗi = −
√

1 − P2
i sin Qi, Q̇i = Pi√

1−P2
i

cos Qi + μPj, (16)

where i, j ∈ {1, 2} and i 
= j. The classical dynamics is a
mixture of regular and chaotic motions as indicated by the
classical Poincaré section at Q1 = π with sin Q2 > 0 in
Fig. 7(a). The parameters for the figure are J = 2, μ = 0.5
and the energy Ec = −0.9.

To plot energy eigenstates in phase space, we first
construct quantum phase space by dividing phase space
into L4 Plank cells, i.e., Qi = 0, 2π

L , . . . , 2π
L (L − 1), and

Pi = −mL
j , −(m−1)L

j , . . . , mL
j . Here L = 2m + 1 and L2 = 2 j +

1. Limited by computational resources, we take L = 10.
For each Plank cell, we assign a localized quantum state
[38,40,43]

|Q1, P1; Q2, P2〉 = |Q1, P1〉 ⊗ |Q2, P2〉, (17)

where |Q, P〉 is defined as [38]

|Q, P〉 j = 1√
L

m∑
n=−m

e−iQ(n+P j)|n + P j〉. (18)

The subscript j meas that Planck cells |Q, P〉 are dependent
on angular momentum quantum number j. We will neglect
j afterwards for simplicity. These quantum states not only
form a complete basis for the system but also have excellent
classical meaning: The average angular momentum of state
|Q, P〉 is just the same as Eq. (14) and the uncertainties of
Jx, Jy, Jz are all proportional to h̄

√
j, which decreases as 1/

√
h̄

with decreasing h̄ and fixed J , see Appendix C.
As it is impossible to plot a complete energy eigenstate in

the four-dimensional phase space, we plot a section, which
we call quantum Poincaré section. In our calculation, for an
energy eigenstate |E〉, we first set the section at Q1 = π and
then compute the projection amplitude, ρQ,sec(P1, P2; E ) =
|〈π, P1; Q2, P2|E〉|2, where

Q2 = arccos

⎡
⎢⎣ (H/J − μP1P2 −

√
1 − P2

1 cos Q1)√
1 − P2

2

⎤
⎥⎦. (19)

The results ρQ,sec for five different eigenstates are shown in
Figs. 7(b)–7(f). The energy eigenvalues are chosen around
E = −0.9, the energy for the classical Poincaré section in
Fig. 7(a). It is clear that each quantum Poincaré section re-
sembles a part of the classical Poincaré section. For example,
Fig. 7(d) resembles integrable islands located at the upper
right and lower left corners of Fig. 7(a), Fig. 7(c) corresponds
to the whole chaotic sea in Fig. 7(a), and Fig. 7(e) resembles
two integrable island located at the upper right and lower
left corners of Fig. 7(a). The most interesting is that the five
quantum Poincaré sections combined just fill up the classical
Poincaré section. This feature is general in our numerical
results: For any classical Poincaré section at a given energy
Ec, we can always find energy eigenstates around Ec whose
quantum Poincaré sections just fill up the classical Poincaré
section. This feature is a signature of self-similarity in energy
eigenstates.

FIG. 8. Histograms the variance Var(P2) at three different widths
(a) �E = 0.2, (b)�E = 0.1, and (c)�E = 0.04. (d) The ratio func-
tion f (Ec, �E ) with the threshold δ = 0.16. The energy shells are all
centered at Ec = −0.9.

We next put the above observation on a quantitative ground
by focusing on how wide the eigenstates spread in phase
space. For an energy eigenstate |E〉 and its distribution ρQ,sec,
we define the following variance:

Var(P2) ≡
∑

P1

∑
P2�0 ρQ,sec(P)(P − P̄)2∑
P1

∑
P2�0 ρQ,sec(P)

, (20)

where we abbreviate (P1, P2) as a vector P and denote P̄ as
the mean of P for the left half of Poincaré section. If |E〉 is
chaotic, then its Var(P2) is large, while Var(P2) will be small
if it is regular. The classifier is defined as

C(δ; |E〉) =
{

0 if 0 < Var(P2) < δ

1 if Var(P2) � δ
, (21)

where δ is a chosen threshold. For this classifier, the con-
trol parameter is �E , the width of the energy shell. Our
numerical results are summarized in Fig. 8. The first three
panels [Figs. 8(a)–8(c)] are the histograms of the variance for
different widths �E . They are very similar to each other. In
Fig. 8(d), the ratio function f (Ec,�E ) in Eq. (10) is plotted,
and it saturates quickly with �E . They all demonstrate the
self-similarity in eigenstates.

For this model, the last numerical check is done by count-
ing the numbers of integrable and chaotic eigenstates. We
compute all the eigenstates in the energy shell [−0.95,−0.85]
and then examine each of them to see whether it is an inte-
grable or chaotic eigenstate. We find that there are NI = 122
integrable eigenstates and NC = 59 chaotic ones. The volume
of integrable islands and the total volume of the constant
energy surface at Ec = −0.9 in classical phase space are eval-
uated numerically. Our result is VI/V = 0.60 ± 0.02, close
to NI/(NI + NC ) = 0.68, confirming the self-similarity. For
details, see Appendix D.
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FIG. 9. The Poincaré section of the classical kicked rotor. The
initial points are uniformly sampled along p axis with fixed q near π .

B. Quantum kicked rotor

The Hamiltonian of kicked rotor is [48]

H = p2

2
+ K cos q

∞∑
n=−∞

δ(t − n) , (22)

where K is the kicking strength. Its classical dynamics can
be reduced to the Chirikov map on the toric phase space
(q, p) ∈ [0, 2π )⊗2 by focusing the state before each kick, i.e.,
(qn, pn) = (q, p)(t = n − 0). The dynamics reads [48]

{
qn+1 = qn + pn+1 mod 2π ,

pn+1 = pn + K sin qn mod 2π .
(23)

Parameter K controls the dynamics of kicked rotor. For K �
KC ≈ 0.972 [48], the phase space is roughly separated into
chaotic sea and integrable islands. See Fig. 9 for the case of
K = 1.1.

As there is a periodic kicking, the quantum dynamics of
the kicked rotor is given by the following unitary Floquet
evolution:

Û = e−i p̂2/2h̄e−iK cos q̂/h̄. (24)

The analogs to energy eigenstates and eigenvalues here are
the eigenstates of Û (Floquet states) and their pseudoener-
gies [49–51]. For the continuity of notation, we still denote
them as |E〉 and E , i.e., Û |E〉 = e−iE |E〉. We point out that
there still holds the correspondence between Floquet states
and the the classical invariant distributions as we argued in
Sec. II. This is illustrated in Fig. 10 with the same setup
as in Refs. [38,40,52]. The phase space is discretized into
m×m Planck cells and the effective Planck constant is h̄eff =
2π h̄/m2.

For this quantum kicked rotor, we discuss the self-
similarity with two control parameters of h̄eff and the
pseudoenergy shell width �E . The self-similarity with h̄eff is

FIG. 10. The typical chaotic (a) and integrable (c) trajectories
of classical kicked rotor and their corresponding quantum Floquet
states [(b) and (d)]. The parameter K = 1.1 and the effective Planck
constant is h̄eff ≈ 0.0039, i.e., there are 40×40 Planck cells in total.

shown in Fig. 11(a) with the classifier

Cwidth(|E〉) =
{

1 W (|E〉) > 0.8π

0 otherwise
. (25)

Here W (|E〉) is the width of Floquet state in phase space
defined with Planck cell basis |Q, P〉 [38], i.e.,

W (|E〉)2 =
∑
Q,P

[(Q − π )2 + (P − π )2]|〈Q, P|E〉|2. (26)

FIG. 11. The self-similarity with quantum kicked rotor. (a) The
ratio f (Ec, �E ) as a function of the inverse of the effective Planck
constant with �E = 2 and Ec = 0. (b) The ratio as the function of
the width of energy shell �E with h̄eff ≈ 0.0039 and Ec = 0. (c) The
number of Floquet states as a function of the width of energy shell
�E . (d) The dependence of the generalized Wigner–von Neumann
entropy �(Ec, �E ) on the center pseudoenergy Ec. The pseudoen-
ergy shell width �E = 0.4 here.
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FIG. 12. The ratio f for various classifiers: (a) magnetization for a single spin (sixth spin), (b) total magnetization, (c) two-spin-correlation
for third spin and fourth spin, (d) global-X-correlation, and (e) second Rényi entropy of first spin. (f) The total number of energy eigenstates
in energy shell [Ec − �E/2, Ec + �E/2]. We take the length of spin chain to be N = 12, parameter ρ = 0.4 and central energy Ec = 4.

Geometrically, W (|E〉) quantifies the “radius” of Floquet
states to the center point (q, p) = (π, π ). With the same clas-
sifier, the self-similarity with pseudoenergy shell width �E as
the control parameter is shown in Fig. 11(b), where the ratio
f (Ec,�E ) quickly saturates to a similar value as in Fig. 11(a).
This demonstrates that decreasing h̄eff fixing �E is equivalent
to increasing �E with fixed h̄eff as discussed in Appendix A.

Although the agreement between the two saturation values
in Figs. 11(a) and 11(b) vindicates our argument in Ap-
pendix A, we note that our analysis in the Appendix only
works at the vicinity of h̄ ∼ 0 and for small �E , and the
agreement at such large �E is still surprising. This is related
to that the pseudoenergies are confined into [0, 2π ) due to the
periodic kicking. This means that the different eigenenergies
without kicking are folded into this finite interval. Thus the
kicked rotor has the same dynamical feature at pseudoenergy
shells centered at different pseudoenergies, similarly to the
billiard systems where the dynamics is also not sensitive to the
energy. This is supported by the results in Fig. 11(c), where
the number of eigenstates in the energy shell grows linearly
with the shell width. This can be further demonstrated by that
the entropy of the renormalized distributions of Floquet states
in given pseudoenergy shells is roughly independent of the
center of the shell. Formally, we compute

pQ,P(Ec,�E ) =
∑

E ′∈S(Ec,�E ) |〈Q, P|E ′〉|2
|S (Ec,�E )| , (27)

which is actually the probability distribution pQ,P =
Tr[|Q, P〉〈Q, P|ρ̂(Ec,�E )] of maximally mixed state in the
energy shell ρ̂(Ec,�E ) ∝ ∑

E ′∈S(Ec,�E ) |E ′〉〈E ′|. We then
compute its generalized Wigner–von Neumann entropy [53]
on a Planck cell basis (with normalization),

�(Ec,�E ) = − 1

log m2

∑
Q,P

pQ,P(Ec,�E ) log pQ,P(Ec,�E ).

(28)

The function log is the natural logarithm. By normalization,
we make sure � ∈ [0, 1]. In Fig. 11(d), that the entropy is
almost constant as the center energy Ec changes demonstrates
the independence of dynamics to Ec in the kicked rotor.

C. Heisenberg XXZ model

Though our explanation of self-similarity relies on the
quantum-classical correspondence, we find that it exits for
quantum systems that do not have well-defined classical
limits. Here is an example, one-dimensional Heisenberg
XXZ model [54], whose Hamiltonian with open boundary
condition is

H =
N−1∑
i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + ρσ z

i σ z
i+1

)
, (29)

where σ
x,y,z
i are Pauli operators on the ith site. We use

five different functions F (|ψn〉) to characterize the energy
eigenstates |ψn〉. The first four are expectations of different
operators O, F (O, |ψn〉) = 〈ψn|O|ψn〉. These four different
operators are as follows: (i) single spin, here we choose
σ z

[N/2]; (ii) total magnetization Mz = ∑N
i=1 σ z

i ; (iii) two-point
correlation C34 = σ x

3 σ x
4 ; and (iv) global-X-correlation product

Nx = ∏N
i=1 σ x

i . The fifth function the second-Rényi entropy
[55] of the first spin, i.e.,

F (|ψn〉) = − log
[

Tr
(
ρ2

1

)]
, (30)

where ρ1 = Tr2,...,N |ψn〉〈ψn| is the reduced density matrix
for the first spin. For each of these five different functions, the
classifier is defined as

C(|ψn〉; ξ ) =
{

1 F (|ψn〉) � ξ ,

0 otherwise ,
(31)

where ξ is a chosen threshold value.
All calculations are done by exact diagonalization and the

results are shown in Fig. 12. For all the local operators [56],

034123-8



SELF-SIMILARITY AMONG ENERGY EIGENSTATES PHYSICAL REVIEW E 107, 034123 (2023)

the total magnetization, single spin and two-point-correlation
operator, the ratio functions f (�E ) quickly saturate as
�E , indicating the self-similarity. The result for the the
second-Rényi entropy is similar. However, for the global-X-
correlation, the ratio does not saturate at a constant value
even if there are hundreds of energy eigenstates in the en-
ergy shell. It seems that the self-similarity fails for nonlocal
operators.

Our results can be interpreted in the context of observ-
ability of operators. When we observe a certain property
of Heisenberg-XXZ spin chain in a macroscopic way, local
properties, such as magnetization, correlation, or reduced den-
sity matrix for one spin, can be measured with macroscopic
instruments. However, nonlocal operators such as global-
X-correlation, do not have classical macroscopic, meaning
and their properties cannot be measured with a classical
instrument.

IV. CONCLUSION AND DISCUSSION

We have discovered self-similarity among energy eigen-
states of a quantum system. If all the eigenstates are ordered
according to their corresponding eigenvalues and are divided
into different groups according to their properties or features,
then the members of the same group tend to “repel” each other
and scatter rather evenly among all the eigenstates. In other
words, inside any energy shell S (Ec,�E ), the composition of
eigenstates from different groups is very similar. Just like a
shoreline, any piece looks similar to the other piece as long as
the piece is not too short. We have offered an explanation why
this self-similarity should exist in quantum systems that have
well-defined classical limits. Our numerical results show that
this self-similarity also exists in quantum systems that have no
well-defined classical limits.

The three quantum systems that we studied in Sec. III have
a common feature: Their Hilbert spaces have finite dimen-
sions. When we enlarge their Hilbert spaces, for example, by
increasing j (or N) or adding more spins, each of these quan-
tum systems will have more eigenstates. The self-similarity
suggests that despite that the Hilbert space is getting big-
ger, the composition of eigenstates will remain roughly the
same. It is analog to shuffled cards: When you insert one
deck of cards randomly into 100 decks of thoroughly shuffled
cards, nothing changes significantly besides there are more
cards. One may use this to define the classical limit of a
quantum system, in particular, the quantum system that has
no well-defined classical counterpart: When the composition
of different types of eigenstates no longer changes with the
dimension of the Hilbert space, the quantum system reaches
its classical limit.

Modern statistical mechanics has a very basic hypothesis,
the postulate of equal a priori probability [57]. It is regarded
as a working hypothesis, that is, its justification comes not
from that it is derived from the fundamental microscopic
theory but from the fact that the conclusions derived from
it agree with experiments [57]. The self-similarity among
energy eigenstates offers a reasonable justification for this
hypothesis from a microscopic perspective. According to
this postulate, for a quantum system, the microcanonical en-
semble average of any physical observable Ôphy should be

〈Ôphy〉�E = Tr[Ôphyρ̂�E ] with

ρ̂�E = 1


(Ec,�E )

[∑
E∈S

|E〉〈E |
]

, (32)

where 
(Ec,�E ) is the total number of energy eigenstates in
the energy shell S (Ec,�E ). Let us project every eigenstate
|E〉 into the phase space, then the probability of the system at
the Planck cell |Q, P〉 is

Prob(Q, P) = 1


(Ec,�E )

[∑
E∈S

|〈Q, P|E〉|2
]

, (33)

where Q and P are multidimensional variables. The self-
similarity implies that this probability is zero outside of
the shell S (Ec,�E ) and the same for every Planck cell in
the shell. This holds for any quantum system, integrable or
chaotic. For a fully chaotic system, every eigenstate |E〉 in-
side the shell looks about the same; consequently, the density
matrix (32) is still valid even as the width �E is so small
that there is only one eigenstate in the shell. This is just the
well-known eigenstate thermalization hypothesis [58,59]. For
systems that are not fully chaotic, the width �E has to be
large enough so that different types of eigenstates are properly
represented statistically. Overall, this explains why there is
no need to consider the integrability of the system when the
microcanonical density matrix (32) is used.
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APPENDIX A: RELATION BETWEEN DECREASING
PLANCK CONSTANT AND ENLARGING

ENERGY WINDOW

When discussing the circular billiard, we have used the fact
that the decreasing of h̄ is equivalent to simply increasing
the shell width �E with fixed Ec. This is clearly right for
the case of billiards; for a general case, it needs some more
clarification.

Let us discuss the general case and the formal definition of
the eigentstates in the energy shell here. Consider a general
quantum system near the limit h̄ → 0, the energy levels in the
interval of S (Ec,�E ) could be expressed by a quantum num-
ber relative to Ec, i.e., by letting Ec = Enc (h̄), then En(h̄) =
Enc+(n−nc )(h̄) ≈ Ec + (n − nc)β h̄α ≡ Ec + h̄αGn−nc (Ec). Here
α > 0 and Gn is some function independent of h̄. We note that
the nearest energy spacing in a fixed energy shell S (Ec,�E )
should vanish as h̄ → 0, and thus we always have the factor
of h̄α . Here are two examples. For a one-dimensional billiard,
we have En ∝ h̄2n2 ⇒ En ≈ Ec + 2Ech̄2(n − nc) with α = 2.
And for systems similar to hydrogen atoms, we have En ∝
1/h̄2n2 and thus En ≈ Ec − 2(n − nc)h̄/E3/2

c , which means
α = 1.
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With the above consideration, the collection of eigenstates
within a given energy shell can then be defined as

ϒ(Ec,�E , h̄) = {ψn,h̄ : En(h̄) ∈ S (Ec,�E )}
= {ψn,h̄ : h̄αGn ∈ S (0,�E )}. (A1)

With h̄ decreasing by a factor of w > 1, we have
ϒ(Ec,�E , h̄/w)={ψn,h̄/w, h̄αGn/w

α ∈ S (0,�E )}= {ψn,h̄/w,

h̄αGn ∈ S (0,wα�E )}. If the physics of eigenstates of fixed
level is not sensitive to h̄ (this is true for quantum systems who
have clear classical counterparts, since eigenstates become
classical invariant distributions in phase space as h̄ → 0),
then we have the asymptotic behavior for the collection of
eigenstates,

ϒ(Ec,�E , h̄/w) = ϒ(Ec,w
α�E , h̄). (A2)

This means that changing h̄ and changing �E at the opposite
directions are the same on the population of eigenstates, so
does it on any statistical properties of eigenstates, e.g., the
self-similarity.

This equivalence of increasing �E and decreasing h̄) relies
on two assumptions. (1) The expansion of Enc+(n−nc ) ≈ Ec +
h̄αGn near Ec has a high precision and (2) the eigenstates are
not sensitive to h̄. For billiards, both of these two assumptions
are satisfied exactly. The energy levels has a natural cut-off
at α = 2 while the eigenfunction is actually the solution of
(∇2 + k2

nm)ψnm = 0 which is independent of h̄. For other sys-
tems discussed in the main text, these two assumptions are
not exactly satisfied. For the double-top and kicked rotor,
the equivalence still works well as their classical counterparts
are well defined. For the XXZ model, we should expect that
there is difference between enlarging �E and reducing h̄.

We also note that the center of energy shell is the same on
both sides of Eq. (A2). This holds when Ec = Enc has a solu-
tion. In general, we can only choose nc as the closest quantum
energy level near Ec and this would make the right-hand side
of Eq. (A2) has a different Ec. However, we expect when h̄
goes to zero, this shifting would vanish since the energy levels
become sufficient dense and Ec = Enc would has a solution of
arbitrarily high precision.

APPENDIX B: CLASSICAL CORRESPONDENCE
OF QUANTUM COUPLED TOP

We start with Hamiltonian (13) and use path integral
method to rigorously derive the system’s classical counterpart.
We first review some basics of coherent states of spin J , which
are defined as

|μ〉 = 1

(1 + |μ|2)J

2J∑
n=0

√
(2J )!

(2J − n)!n!
μn|Lz = J − n〉, (B1)

where μ = eiφ tan(θ/2). We have following properties for
spin coherent states:

〈μ′|μ〉 = (1 + μ′∗μ)2J

(1 + |μ′|2)J (1 + |μ|2)J
, (B2)

〈μ′|L̂+|μ〉 = 2Jμ

1 + μ′∗μ
〈μ′|μ〉, (B3)

〈μ′|L̂z|μ〉 = J
1 − μ′∗μ
1 + μ∗μ

〈μ′|μ〉, (B4)

1 =
∫

2J + 1

4π
d
|μ〉〈μ|. (B5)

We want to evaluate the propagator 〈μ(t ′)|e−iĤT |μ(t )〉 with
T = t ′ − t . Here μ ≡ (μ1, μ2), |μ〉 ≡ |μ1〉 ⊗ |μ2〉, which
corresponds a double-spin coherent state. We divide the time
interval T into N+1 equal pieces of duration δt=T/(N+1)
and denote μi = μ(t ) + iδt . After inserting N coherent-
states’ closure relations (B5), we get

〈μ(t ′)|e−iĤT |μ(t )〉

=
∫ N∏

i=1

(
2J + 1

4π

)2

d
1,id
2,i〈μi+1|e−iĤδt |μi〉

=
∫

D[μ]
N∏

i=1

[〈μi+1|μi〉 − i〈μi+1|Ĥ |μi〉δt + O(δt2)]

=
∫

D[μ]
N∏

i=1

〈μi+1|μi〉
{

1 − iδt

[
− 2J Re μ1,i

1 + μ∗
1,i+1μ1,i

− (1 ↔ 2) − μJ
1 − μ∗

1,i+1μ1,i

1 + μ∗
1,i+1μ1,i

1 − μ∗
2,i+1μ2,i

1 + μ∗
2,i+1μ2,i

]}

=
∫

D[μ] exp(iS[μ(t ),μ(t ′)]). (B6)

Here D[μ] ≡ ∏N
i=1( 2J+1

4π
)2d
1,id
2,i is the functional inte-

gration measure, and d
1,i (d
2,i) is the solid angle measure
of the first (second) top at lattice μi. The discrete form of
action immediately reads

S[μ,μ′]
2J

=
N∑

i=1

−i log
∏

α=1,2

1 + μ∗
α,i+1μα,i√

(1 + |μ′
α|2)(1 + |μα|2)

+ δt

(
Re μ1,i

1 + μ∗
1,i+1μ1,i

+ Re μ2,i

1 + μ∗
2,i+1μ2,i

+ μ

2

1 − μ∗
1,i+1μ1,i

1 + μ∗
1,i+1μ1,i

1 − μ∗
2,i+1μ2,i

1 + μ∗
2,i+1μ2,i

)
. (B7)

In the continuous limit, substituting μi+1 = μi + dμ, we get

1 + μ∗μ√
(1 + |μ′|2)(1 + |μ|2)

= 1 + 1

2

μdμ∗ − μ∗dμ

1 + |μ|2 . (B8)

Then, the action can be written as the functional

S[μ,μ′]
J

=
∫

dt

[
−i

μ1μ̇
∗
1 − μ∗

1μ̇1

1 + |μ1|2
− i

μ2μ̇
∗
2 − μ∗

2μ̇2

1 + |μ2|2

+ cos φ1 sin θ1+ cos φ2 sin θ2+μ cos θ1 cos θ2

]
.

(B9)

The (normalized) Lagrangian reads

L = − (1 − cos θ1)φ̇1 − (1 − cos θ2)φ̇2 + cos φ1 sin θ1

+ cos φ2 sin θ2 + μ cos θ1 cos θ2. (B10)
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In the classical limit, i.e., J → +∞ (or equivalently, h̄ → 0),
the propagator is permutation matrix with the jumping gov-
erned by the classical canonical equation of motion [Eq. (16)].

APPENDIX C: ANGULAR MOMENTUM PLANCK CELLS

In this Appendix, we give the proof of properties regarded
to Planck cells [Eq. (18)]. Recall the definition of Planck
cells [38]:

|Q, P〉 = 1√
�p

∫ P+�p

P
d p|p〉e−iQp/h̄, (C1)

where �q and �p are size of cells along q, p axis with
�q�p = 2π h̄. Express it in a discrete formalism, we obtain
the Planck cells for a single angular momentum:

|Q, P〉 = 1√
L

m+P j∑
n=−m+P j

e−iQn|Lz = n〉, (C2)

which is Eq. (18). It is unambiguous that the L̂z has mean value
approximate to P j while variation is in a same magnitude with
m, i.e., proportional to 1/

√
h̄. In the classical limit, this form

of Planck cell is equivalent to [38]

|Q, P〉(position) = 1√
�q

∫ Q+�q

Q
dq|q〉eiPq/h̄, (C3)

which means the Q̂ also has mean value approximate to its
classical correspondence with variation proportional to 1/

√
h̄.

The above analysis can also be done by brute-force calculation
using algebraic relations of quantum angular momentum.

APPENDIX D: COUPLED-TOP’S PHASE-SPACE VOLUME

Coupled-top’s phase space is a four-dimensional manifold.
Therefore the integrable islands and chaotic seas on a spe-
cific isoenergetic surface are three-dimensional hypersurface.
However, only sections of isoenergetic surface are visible to
us. In this part of Appendix, we show how to calculate the area
of integrable islands and chaotic seas via plotting Poincaré
sections (see Fig. 13). The overall integration measure for
evaluating area of three-dimensional hypersurface 
 is

V (
) =
∫ 2π

0
dQ1A(
; Q1), (D1)

where

A(
; Q1)=
∫∫

P∈


dP1dP2C1(E ; Q1, P1, P2)C2(E ; Q1, P1, P2),

(D2)

with two projection factors C1 and C2 defined as

C1(E ; Q1, P1, P2) =
√

1 +
(

∂Q2

∂P1

)2

+
(

∂Q2

∂P2

)2

, (D3)

C2(E ; Q1, P1, P2) = 1√
1 −

(
∂H/∂Q1

|∇H |
)2

. (D4)

Here Q2 is interpreted as a function of (E ; Q1, P1, P2), see
Eq. (19); and H is interpreted as a function of (Q1, Q2, P1, P2)
with Q2 evaluated via Eq. (19) after partial derivative. The
three-dimensional area of region 
 can be approximated as a

FIG. 13. The coupled-top’s classical Poincaré sections of various Q1 with E = −0.9 fixed. The partition we take is {0.1, 0.7, 1.0,

1.3, 1.6, 1.9, 2.2, 2.5, 2.8, 3.1, 3.4, 3.7, 4.0, 4.3, 4.6, 4.9, 5.2, 5.8} (from left to right, up to down).
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FIG. 14. Plot of integral A(
; Q1). As for black line, 
 repre-
sents “total isoenergetic surface”; while for dashed line 
 denotes
integrable islands.

summation

V (
) ≈
N−1∑
i=1

A(
, Q1,i ) + A(
, Q1,i+1)

2
�Q1,i, (D5)

where {Q1,1, . . . , Q1,N } is a partition of [0, 2π ]. The
two-dimensional integral A(
; Q1) is done in each
Poincaré section numerically, and the results are plotted in
Fig. 14.

APPENDIX E: ENERGY CENTER DEPENDENCE
OF THE RATIO IN AAH MODEL

As discussed in Ref. [60], AAH model performs well mo-
bility edge [60,61] as the parameters in model is properly
chosen. Here we show the energy center, i.e., Ec dependence
in such model. The numerical results are shown in Fig. 15.

FIG. 15. The mobility edge and Ec dependence of ratio in AAH
model. (a) The mobility edge indicated by inverse participation ra-
tio of eigenstates at different energies. The parameters are 1/b =
(
√

5 − 1)/2, α = 0.2, L = 3000, and λ = −1.1. Theoretically the
mobility edge is at E = 1 as in Ref. [60]. (b) Different ratio
f (Ec, �E ) of Ec being above and below the mobility edge. Some
points are missing for specific Ec and �E since there are gaps in this
model.

The Hamiltonian of the model reads

Ĥ =
L∑

n=1

|n〉〈n + 1| + λ cos 2πnb

1 − α cos 2πnb
|n〉〈n| + c.c. (E1)

By letting |L + 1〉 = |1〉 we implement the periodic boundary
condition. To quantitatively measure the locality of eigen-
states and show the mobility edge, we use the inverse
participation ratio (IPR) for each eigenstates as

VIPR(|E〉) =
L∑

n=1

|〈n|E〉|4. (E2)

This quantity is also used in Ref. [60]. Note the eigenstates
are normalized. The classifier is based on this function as

C(|E〉) =
{

1 VIPR(|E〉) > 0.2
0 otherwise

. (E3)
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